Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2719-2733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229566

RESUMO

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.


Assuntos
Glicosídeos Cardíacos , Erysimum , Glucosinolatos , Herbivoria , Glucosinolatos/metabolismo , Animais , Glicosídeos Cardíacos/farmacologia , Erysimum/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos dos fármacos
2.
Plast Reconstr Surg ; 153(1): 204e-217e, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075274

RESUMO

SUMMARY: Artificial intelligence (AI) has been a disruptive technology within health care, from the development of simple care algorithms to complex deep-learning models. AI has the potential to reduce the burden of administrative tasks, advance clinical decision-making, and improve patient outcomes. Unlocking the full potential of AI requires the analysis of vast quantities of clinical information. Although AI holds tremendous promise, widespread adoption within plastic surgery remains limited. Understanding the basics is essential for plastic surgeons to evaluate the potential uses of AI. This review provides an introduction of AI, including the history of AI, key concepts, applications of AI in plastic surgery, and future implications.


Assuntos
Procedimentos de Cirurgia Plástica , Cirurgiões , Humanos , Inteligência Artificial , Algoritmos , Atenção à Saúde
3.
Ecol Lett ; 27(1): e14340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017619

RESUMO

Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.


Assuntos
Asclepias , Borboletas , Animais , Borboletas/genética , Larva , Asclepias/química , Cardenolídeos/toxicidade , Adenosina Trifosfatases
4.
J Chem Ecol ; 50(1-2): 52-62, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932621

RESUMO

Plants have evolved a diverse arsenal of defensive secondary metabolites in their evolutionary arms race with insect herbivores. In addition to the bottom-up forces created by plant chemicals, herbivores face top-down pressure from natural enemies, such as predators, parasitoids and parasites. This has led to the evolution of specialist herbivores that do not only tolerate plant secondary metabolites but even use them to fight natural enemies. Monarch butterflies (Danaus plexippus) are known for their use of milkweed chemicals (cardenolides) as protection against vertebrate predators. Recent studies have shown that milkweeds with high cardenolide concentrations can also provide protection against a virulent protozoan parasite. However, whether cardenolides are directly responsible for these effects, and whether individual cardenolides or mixtures of these chemicals are needed to reduce infection, remains unknown. We fed monarch larvae the four most abundant cardenolides found in the anti-parasitic-milkweed Asclepias curassavica at varying concentrations and compositions to determine which provided the highest resistance to parasite infection. Measuring infection rates and infection intensities, we found that resistance is dependent on both concentration and composition of cardenolides, with mixtures of cardenolides performing significantly better than individual compounds, even when mixtures included lower concentrations of individual compounds. These results suggest that cardenolides function synergistically to provide resistance against parasite infection and help explain why only milkweed species that produce diverse cardenolide compounds provide measurable parasite resistance. More broadly, our results suggest that herbivores can benefit from consuming plants with diverse defensive chemical compounds through release from parasitism.


Assuntos
Asclepias , Borboletas , Parasitos , Doenças Parasitárias , Animais , Borboletas/metabolismo , Asclepias/química , Cardenolídeos/farmacologia , Cardenolídeos/metabolismo , Larva/metabolismo
5.
Sci Rep ; 13(1): 20437, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993590

RESUMO

Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.


Assuntos
Asclepias , Urbanização , Asclepias/genética , Deriva Genética , Evolução Biológica , Adaptação Fisiológica
6.
Cureus ; 15(9): e45695, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37868462

RESUMO

Introduction Artificial intelligence (AI) and cardiovascular diseases have resulted in significant advancements in healthcare and medical research. This study focused on examining the gender equality ratio of first authors in "artificial intelligence and cardiovascular disease" articles from 2005 to 2022. It is critical to investigate gender representation in this dynamic subject given the growing usage of AI in cardiovascular medicine. Aims The aim of this study is to visualize the changing face of gender equality within the field of artificial intelligence (AI) and cardiovascular diseases by examining the gender distribution of the first authors' published articles from 2005 to 2022, providing important insights into disparities in gender and the potential for fostering inclusivity and diversity in the scientific community. Methodology All academic articles published from 2005 to 2022 were reviewed. The gender of the first author of each study was recorded. Since there were so few articles available for five months in 2023, they were excluded. The research was subsequently categorized based on the gender, ethnicity, and country of origin of the first authors. Results With a value of 0.54, the overall gender ratio favored male authors (275) over female authors (149). In 2022, female first authors had the most publications (59), while male first authors contributed 113 articles. Predictions for 2027 showed a significant increase in the number of publications on this topic by male authors (950) and female authors (580). A gradual increase in the number of female first authors was observed over this period, although their representation remained lower compared to male first authors. Conclusions In the first authorship, our analysis found a gender gap, with male authors predominating. Females' engagement must be encouraged if academic gender equality is to be achieved. Female researchers are empowered by creating an inclusive atmosphere through mentorship and regulatory changes. For knowledge to advance fairly, collaboration is essential.

7.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790475

RESUMO

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.

8.
Evolution ; 77(11): 2431-2441, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37656826

RESUMO

A major predicted constraint on the evolution of anti-herbivore defense in plants is the nonindependent expression of traits mediating resistance. Since herbivore attack can be highly variable across plant tissues, we hypothesized that correlations in toxin expression within and between plant tissues may limit population differentiation and, thus, plant adaptation. Using full-sib families from two nearby (<1 km) common milkweed (Asclepias syriaca) populations, we investigated genetic correlations among 28 distinct cardenolide toxins within and between roots, leaves, and seeds and examined signatures of tissue-specific divergent selection between populations by QST-FST comparisons. The prevalence, direction, and strength of genetic correlations among cardenolides were tissue specific, and concentrations of individual cardenolides were moderately correlated between tissues; nonetheless, the direction and strength of correlations were population specific. Population divergence in the cardenolide chemistry was stronger in roots than in leaves and seeds. Divergent selection on individual cardenolides was tissue and toxin specific, except for a single highly toxic cardenolide (labriformin), that showed divergent selection across all plant tissues. Heterogeneous evolution of cardenolides within and between tissues across populations appears possible due to their highly independent expression. This independence may be common in nature, especially in specialized interactions in which distinct herbivores feed on different plant tissues.


Assuntos
Asclepias , Borboletas , Humanos , Animais , Borboletas/metabolismo , Herbivoria , Plantas , Cardenolídeos/metabolismo , Cardenolídeos/toxicidade , Asclepias/metabolismo
9.
Curr Biol ; 33(17): 3702-3710.e5, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607548

RESUMO

In intimate ecological interactions, the interdependency of species may result in correlated demographic histories. For species of conservation concern, understanding the long-term dynamics of such interactions may shed light on the drivers of population decline. Here, we address the demographic history of the monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias syriaca (A. syriaca), using broad-scale sampling and genomic inference. Because genetic resources for milkweed have lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation for common milkweed. Next, we show that despite its enormous geographic range across eastern North America, A. syriaca is best characterized as a single, roughly panmictic population. Using approximate Bayesian computation with random forests (ABC-RF), a machine learning method for reconstructing demographic histories, we show that both monarchs and milkweed experienced population expansion during the most recent recession of North American glaciers 10,000-20,000 years ago. Our data also identify concurrent population expansions in both species during the large-scale clearing of eastern forests (∼200 years ago). Finally, we find no evidence that either species experienced a reduction in effective population size over the past 75 years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective population size in this species.


Assuntos
Asclepias , Borboletas , Animais , Asclepias/genética , Borboletas/genética , Teorema de Bayes , Densidade Demográfica , Genômica
10.
Proc Biol Sci ; 290(2004): 20230987, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554038

RESUMO

Plant toxicity shapes the dietary choices of herbivores. Especially when herbivores sequester plant toxins, they may experience a trade-off between gaining protection from natural enemies and avoiding toxicity. The availability of toxins for sequestration may additionally trade off with the nutritional quality of a potential food source for sequestering herbivores. We hypothesized that diet mixing might allow a sequestering herbivore to balance nutrition and defence (via sequestration of plant toxins). Accordingly, here we address diet mixing and sequestration of large milkweed bugs (Oncopeltus fasciatus) when they have differential access to toxins (cardenolides) in their diet. In the absence of toxins from a preferred food (milkweed seeds), large milkweed bugs fed on nutritionally adequate non-toxic seeds, but supplemented their diet by feeding on nutritionally poor, but cardenolide-rich milkweed leaf and stem tissues. This dietary shift corresponded to reduced insect growth but facilitated sequestration of defensive toxins. Plant production of cardenolides was also substantially induced by bug feeding on leaf and stem tissues, perhaps benefitting this cardenolide-resistant herbivore. Thus, sequestration appears to drive diet mixing in this toxic plant generalist, even at the cost of feeding on nutritionally poor plant tissue.


Assuntos
Asclepias , Plantas Tóxicas , Herbivoria , Dieta , Cardenolídeos
11.
Proc Natl Acad Sci U S A ; 120(22): e2302251120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216531

RESUMO

In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.


Assuntos
Alcaloides , Asclepias , Besouros , Animais , Herbivoria , Adaptação Fisiológica , Besouros/fisiologia , Cardenolídeos/química , Asclepias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Drosophila/metabolismo
12.
J Chem Ecol ; 49(7-8): 418-427, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36745328

RESUMO

Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony's lifespan.


Assuntos
Asclepias , Borboletas , Abelhas , Animais , Asclepias/metabolismo , Cardenolídeos/toxicidade , Cardenolídeos/metabolismo , Borboletas/metabolismo , Néctar de Plantas , Ouabaína/metabolismo , Drosophila melanogaster , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Ecology ; 104(4): e3986, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752288

RESUMO

Despite long-standing theory for classifying plant ecological strategies, limited data directly link organismal traits to whole-plant growth rates (GRs). We compared trait-growth relationships based on three prominent theories: growth analysis, Grime's competitive-stress tolerant-ruderal (CSR) triangle, and the leaf economics spectrum (LES). Under these schemes, growth is hypothesized to be predicted by traits related to relative biomass investment, leaf structure, or gas exchange, respectively. We also considered traits not included in these theories but that might provide potential alternative best predictors of growth. In phylogenetic analyses of 30 diverse milkweeds (Asclepias spp.) and 21 morphological and physiological traits, GR (total biomass produced per day) varied 50-fold and was best predicted by biomass allocation to leaves (as predicted by growth analysis) and the CSR traits of leaf size and leaf dry matter content. Total leaf area (LA) and plant height were also excellent predictors of whole-plant GRs. Despite two LES traits correlating with growth (mass-based leaf nitrogen and area-based leaf phosphorus contents), these were in the opposite direction of that predicted by LES, such that higher N and P contents corresponded to slower growth. The remaining LES traits (e.g., leaf gas exchange) were not predictive of plant GRs. Overall, differences in GR were driven more by whole-plant characteristics such as biomass fractions and total LA than individual leaf-level traits such as photosynthetic rate or specific leaf area. Our results are most consistent with classical growth analysis-combining leaf traits with whole-plant allocation to best predict growth. However, given that destructive biomass measures are often not feasible, applying easy-to-measure leaf traits associated with the CSR classification appear more predictive of whole-plant growth than LES traits. Testing the generality of this result across additional taxa would further improve our ability to predict whole-plant growth from functional traits across scales.


Assuntos
Fotossíntese , Plantas , Filogenia , Plantas/anatomia & histologia , Fotossíntese/fisiologia , Biomassa , Desenvolvimento Vegetal , Folhas de Planta
14.
Ecology ; 104(4): e3988, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756764

RESUMO

Extreme heat events are becoming more frequent and intense as climate variability increases, and these events inherently vary in their timing. We predicted that the timing of a heat wave would determine its consequences for insect communities owing to temporal variation in the susceptibility of host plants to heat stress. We subjected common milkweed (Asclepias syriaca) plants to in-field experimental heat waves to investigate how the timing of heat waves, both seasonally and relative to a biotic stressor (experimental herbivory), affected their ecological consequences. We found that heat waves had multiyear, timing-specific effects on plant-insect communities. Early-season heat waves led to greater and more persistent effects on plants and herbivore communities than late-season heat waves. Heat waves following experimental herbivory had reduced consequences. Our results show that extreme climate events can have complex, lasting ecological effects beyond the year of the event-and that timing is key to understanding those effects.


Assuntos
Asclepias , Animais , Insetos , Herbivoria , Plantas
15.
Methods Enzymol ; 680: 275-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710014

RESUMO

The biosynthesis of cardiac glycosides, broadly classified as cardenolides and bufadienolides, has evolved repeatedly among flowering plants. Individual species can produce dozens or even hundreds of structurally distinct cardiac glycosides. Although all cardiac glycosides exhibit biological activity by inhibiting the function of the essential Na+/K+-ATPase in animal cells, they differ in their level of inhibitory activity. For within- and between-species comparisons of cardiac glycosides to address ecological and evolutionary questions, it is necessary to not only quantify their relative abundance, but also their effectiveness in inhibiting the activity of different animal Na+/K+-ATPases. Here we describe protocols for characterizing the amount and toxicity of cardenolides from plant samples and the degree of insect Na+/K+-ATPase tolerance to inhibition: (1) an HPLC-based assay to quantify the abundance of individual cardenolides in plant extracts, (2) an assay to quantify inhibition of Na+/K+-ATPase activity by plant extracts, and (3) extraction of insect Na+/K+-ATPases for inhibition assays.


Assuntos
Cardenolídeos , Glicosídeos Cardíacos , Animais , Cardenolídeos/farmacologia , Cromatografia Líquida de Alta Pressão , ATPase Trocadora de Sódio-Potássio/metabolismo , Glicosídeos Cardíacos/farmacologia , Extratos Vegetais/farmacologia
16.
Ecology ; 104(2): e3915, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336890

RESUMO

As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these "leaf economic" traits typically covary in milkweed, a defense synergy could reinforce their co-expression. We report that each of the plant defense traits showed context-dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists.


Assuntos
Asclepias , Borboletas , Animais , Herbivoria , Larva , Asclepias/química , Asclepias/metabolismo , Látex/análise , Látex/química , Látex/metabolismo , Plantas/metabolismo , Folhas de Planta/química
17.
Proc Natl Acad Sci U S A ; 119(25): e2205073119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696564

RESUMO

Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.


Assuntos
Asclepias , Borboletas , Cardenolídeos , Heterópteros , Defesa das Plantas contra Herbivoria , Adenosina Trifosfatases/metabolismo , Animais , Asclepias/metabolismo , Borboletas/metabolismo , Cardenolídeos/química , Cardenolídeos/metabolismo , Cardenolídeos/toxicidade , Herbivoria , Heterópteros/metabolismo , Sementes/metabolismo
18.
Ecology ; 103(11): e3786, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35711089

RESUMO

Spatiotemporal variation in herbivory is a major driver of intraspecific variation in plant defense. Comparatively little is known, however, about how changes in herbivory regime affect the balance of constitutive and induced resistance, which are often considered alternative defensive strategies. Here, we investigated how nearly a decade of insect herbivore suppression affected constitutive and induced resistance in horsenettle (Solanum carolinense), a widespread herbaceous perennial. We allowed replicated horsenettle populations to respond to the presence or absence of herbivores by applying insecticide to all plants in half of 16 field plots. Horsenettle density rapidly increased in response to insecticide treatment, and this effect persisted for at least 4 years after the cessation of herbivore suppression. We subsequently grew half-sibling families from seeds collected during and shortly after insecticide treatment in a common garden and found strong effects of insect suppression on induced resistance. Feeding trials in field mesocosms with false Colorado potato beetles (Leptinotarsa juncta), a common specialist herbivore, revealed that multiyear herbivore suppression drove rapid attenuation of induced resistance: offspring of plants from insect-suppression plots exhibited a near-complete loss of induced resistance to beetles, whereas those from control plots incurred ~70% less damage after experimental induction. Plants from insect-suppression plots also had ~40% greater constitutive resistance compared with those from control plots, although this difference was not statistically significant. We nonetheless detected a strong trade-off between constitutive and induced resistance across families. In contrast, the constitutive expression of trypsin inhibitors (TI), an important chemical defense trait in horsenettle, was reduced by 20% in the offspring of plants from insect-suppression plots relative to those from control plots. However, TIs were induced to an equal extent whether or not insect herbivores had been historically suppressed. Although several defense and performance traits (prickle density, TI concentration, resistance against false Colorado potato beetles and flea beetles, biomass, and seed mass) varied markedly across families, no traits exhibited significant pairwise correlations. Overall, our results indicate that, whereas the divergent responses of multiple defense traits to insect suppression led to comparatively small changes in overall constitutive resistance, they significantly reduced induced resistance against false Colorado potato beetle.


Assuntos
Besouros , Inseticidas , Solanum , Animais , Solanum/fisiologia , Insetos/fisiologia , Herbivoria/fisiologia
19.
BMC Biol ; 20(1): 3, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996429

RESUMO

BACKGROUND: Rodent ultrasonic vocalizations (USVs) are crucial to their social communication and a widely used translational tool for linking gene mutations to behavior. To maximize the causal interpretation of experimental treatments, we need to understand how neural control affects USV production. However, both the aerodynamics of USV production and its neural control remain poorly understood. RESULTS: Here, we test three intralaryngeal whistle mechanisms-the wall and alar edge impingement, and shallow cavity tone-by combining in vitro larynx physiology and individual-based 3D airway reconstructions with fluid dynamics simulations. Our results show that in the mouse and rat larynx, USVs are produced by a glottal jet impinging on the thyroid inner wall. Furthermore, we implemented an empirically based motor control model that predicts motor gesture trajectories of USV call types. CONCLUSIONS: Our results identify wall impingement as the aerodynamic mechanism of USV production in rats and mice. Furthermore, our empirically based motor control model shows that both neural and anatomical components contribute to USV production, which suggests that changes in strain specific USVs or USV changes in disease models can result from both altered motor programs and laryngeal geometry. Our work provides a quantitative neuromechanical framework to evaluate the contributions of brain and body in shaping USVs and a first step in linking descending motor control to USV production.


Assuntos
Ultrassom , Vocalização Animal , Animais , Comunicação , Camundongos , Ratos , Vocalização Animal/fisiologia
20.
Indian J Ophthalmol ; 69(11): 3190-3193, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34708770

RESUMO

PURPOSE: To calculate the intraocular lens power and to determine the relationship between ocular biometry and severity of diabetic retinopathy (DR) in patients with type II diabetes mellitus. METHODS: The study group included 150 type II diabetic subjects with DR. The control group consisted of 150 type II diabetic subjects having no DR. Axial length (AL), corneal power, and anterior chamber depth were measured using LenStar. DR and diabetic macular edema were classified according to International DR Classification. Crystalline lens power was calculated using Barrett Universal II formula. AL to corneal radius ratio was calculated. Chi-square test was used for categorical variables. RESULTS: In multivariate logistic models adjusting for age, sex, glycosylated hemoglobin, duration of diabetes, Mean age of patients in the study group was 62.45 ± 4.85 years, whereas in the control group, it was 63.37 ± 7.29 years. Of the eyes with DR, 117, 76, 69, and 38 had mild NPDR, moderate NPDR, severe NPDR, and PDR, respectively. The difference in the mean duration of diabetes mellitus and glycosylated hemoglobin in both study and control groups was found to be statistically significant. A progressive decrease in the mean AL and the anterior chamber depth was observed with increasing severity of DR, and difference was statistically significant. There was a progressive increase in intraocular lens power with increasing severity of DR, and difference was found to be statistically significant. CONCLUSION: In persons with diabetes mellitus, globe elongation plays quite an important role in protective effects against DR, with contribution from intraocular lens power and other refractive components.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Lentes Intraoculares , Edema Macular , Idoso , Biometria , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/complicações , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...