Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726503

RESUMO

Though iron is one of the vital micronutrients in biological systems excess of which is associated with various illness. Consumption of contaminated water and crops because of its extensive industrial utility is one of the major sources for excess iron in living beings. Hence, we have designed a sensor based on carbon nanoparticles for the detection of Fe (III) and we have also attempted to estimate Fe (III) in spiked water samples. Carbon nanoparticles (CNP) with quantum yield of 40.2 % was synthesized by solid state synthesis from aromatic molecular precursors unlike conventional synthesis methodology. The particle size, stability and optical properties of CNP were investigated by microscopic and spectroscopic techniques. CNP manifested a naked color change from colorless to yellow in presence of Fe (III) and 72 % of CNP's emission was quenched at 487 nm on excitation at 377 nm by Fe (III). The detection time was less than a second and limit of detection was calculated as 0.248 µM. The mechanistic aspect of detection was investigated and applicability of CNP was examined in spiked water samples.

2.
Anal Chim Acta ; 1239: 340678, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628705

RESUMO

Bilirubin is an indispensable biomarker for liver diseases. Utilizing organic molecules as sensor platform for effective detection of bilirubin are little. In addition, the reported fluorophores required longer incubation time for detection. Hence, herein we have attempted to design an imidazole derivative 4-(3H-imidazo[4,5-b]pyridin-2-yl)-N,N-diphenylaniline (IMI) from triphenylamine and pyridine units which could detect bilirubin swiftly without any incubation period. IMI manifested an instant quenching of emission in presence of bilirubin with limit of detection (LOD) 11.74 × 10-6 mol L-1. The mechanistic aspect of detection involves coexistence of both static and dynamic quenching which was suitably justified. Finally, the pragmatic application of IMI was performed in bio-fluids.


Assuntos
Bilirrubina , Imidazóis , Fluorometria , Espectrometria de Fluorescência/métodos , Limite de Detecção
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121043, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189492

RESUMO

Hydrogen sulfide (H2S), one of redox-active sulfur species, is known as a signaling molecule and an antioxidant in biological tissues to maintain cellular functions. The development of selective and sensitive H2S detection is important to understand the role of H2S in vivo. Herein, a new two-photon probe NNE was developed to detect hydrogen sulfide using 6-acetyl-N-methyl-2-naphthylamine with an attachment of 7-nitrobenzo-oxadiazole. The probe NNE exhibits high selectivity towards hydrogen sulfide over other anions. Nucleophilic substitution of H2S leads to a turn-on response with 28-fold enhancement in quantum yield (from 0.004 to 0.117). NNE shows a high sensitivity towards hydrogen sulfide with an extremely low detection limit at 6.8 nM. Furthermore, the probe NNE exhibits two-photon excited fluorescence, making it a suitable probe for monitoring H2S distribution in live cells and tissues without background fluorescence interference.


Assuntos
Sulfeto de Hidrogênio , Diagnóstico por Imagem , Corantes Fluorescentes , Células HeLa , Humanos , Imagem Óptica , Oxirredução , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...