Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 29109, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27388948

RESUMO

Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order.

2.
Sci Rep ; 5: 8999, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25758040

RESUMO

Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

3.
Opt Express ; 20(23): 26075-81, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187423

RESUMO

Gallium arsenide has outstanding performance in optical communication devices for light source purposes. Different approaches have been done to realize the luminescence from GaAs matching the transmission window of optical fibers. Here we present the realization of quasi- temperature independent photoluminescence at around 1.3 µm from millisecond-range thermally treated GaAs. It is shown that the V(As) donor and X acceptor pairs are responsible for the 1.3 µm emission. The influence of the flash-lamp-annealing on the donor-acceptor pair (DAP) formation in the nitrogen and manganese doped and un-doped semi-insulating GaAs wafers were investigated. The concentration of DAP and the 1.3 µm emission can be easily tuned by controlling doping and annealing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...