Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(5): 1202-1224, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215324

RESUMO

Optical microbarcodes have recently received a great deal of interest because of their suitability for a wide range of applications, such as multiplexed assays, cell tagging and tracking, anticounterfeiting, and product labeling. Spectral barcodes are especially promising because they are robust and have a simple readout. In addition, microcavity- and microlaser-based barcodes have very narrow spectra and therefore have the potential to generate millions of unique barcodes. This review begins with a discussion of the different types of barcodes and then focuses specifically on microcavity-based barcodes. While almost any kind of optical microcavity can be used for barcoding, currently whispering-gallery microcavities (in the form of spheres and disks), nanowire lasers, Fabry-Pérot lasers, random lasers, and distributed feedback lasers are the most frequently employed for this purpose. In microcavity-based barcodes, the information is encoded in various ways in the properties of the emitted light, most frequently in the spectrum. The barcode is dependent on the properties of the microcavity, such as the size, shape, and the gain materials. Various applications of these barcodes, including cell tracking, anticounterfeiting, and product labeling are described. Finally, the future prospects for microcavity- and microlaser-based barcodes are discussed.

2.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500970

RESUMO

In this work, an AlGaN-based Deep-Ultraviolet Light-Emitting Diode structure has been designed and simulated for the zincblende and wurtzite approaches, where the polarization effect is included. DFT analysis was performed to determine the band gap direct-to-indirect cross-point limit, AlN carrier mobility, and activation energies for p-type dopants. The multiple quantum wells analysis describes the emission in the deep-ultraviolet range without exceeding the direct-to-indirect bandgap cross-point limit of around 77% of Al content. Moreover, the quantum-confined Stark effect on wavefunctions overlapping has been studied, where Al-graded quantum wells reduce it. Both zincblende and wurtzite have improved electrical and optical characteristics by including a thin AlGaN with low Al content. Mg and Be acceptor activation energies have been calculated at 260 meV and 380 meV for Be and Mg acceptor energy, respectively. The device series resistance has been decreased by using Be instead of Mg as the p-type dopant from 3 kΩ to 0.7 kΩ.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889639

RESUMO

We investigate the phase transitions and the properties of the topological insulator in InGaN/GaN and InN/InGaN double quantum wells grown along the [0001] direction. We apply a realistic model based on the nonlinear theory of elasticity and piezoelectricity and the eight-band k·p method with relativistic and nonrelativistic linear-wave-vector terms. In this approach, the effective spin−orbit interaction in InN is negative, which represents the worst-case scenario for obtaining the topological insulator in InGaN-based structures. Despite this rigorous assumption, we demonstrate that the topological insulator can occur in InGaN/GaN and InN/InGaN double quantum wells when the widths of individual quantum wells are two and three monolayers (MLs), and three and three MLs. In these structures, when the interwell barrier is sufficiently thin, we can observe the topological phase transition from the normal insulator to the topological insulator via the Weyl semimetal, and the nontopological phase transition from the topological insulator to the nonlocal topological semimetal. We find that in InGaN/GaN double quantum wells, the bulk energy gap in the topological insulator phase is much smaller for the structures with both quantum well widths of 3 MLs than in the case when the quantum well widths are two and three MLs, whereas in InN/InGaN double quantum wells, the opposite is true. In InN/InGaN structures with both quantum wells being three MLs and a two ML interwell barrier, the bulk energy gap for the topological insulator can reach about 1.2 meV. We also show that the topological insulator phase rapidly deteriorates with increasing width of the interwell barrier due to a decrease in the bulk energy gap and reduction in the window of In content between the normal insulator and the nonlocal topological semimetal. For InN/InGaN double quantum wells with the width of the interwell barrier above five or six MLs, the topological insulator phase does not appear. In these structures, we find two novel phase transitions, namely the nontopological phase transition from the normal insulator to the nonlocal normal semimetal and the topological phase transition from the nonlocal normal semimetal to the nonlocal topological semimetal via the buried Weyl semimetal. These results can guide future investigations towards achieving a topological insulator in InGaN-based nanostructures.

4.
J Phys Condens Matter ; 33(35)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34126596

RESUMO

We determine the second-order elastic constants (SOECs) and the third-order elastic constants (TOECs) for wurtzite AlN, GaN, and InN using the hybrid-density functional theory calculations with the plane wave basis sets. We apply the analytical formulas for the deformation gradient tensors as functions of the Lagrangian strain in order to eliminate the truncation errors in the Taylor expansion series of the deformation gradients and to facilitate the calculation of the Lagrangian stress. We show that the convergence criteria for the calculation of the TOECs with respect to thek-points density and the plane wave cutoff energy are similar for the strain-energy method and the strain-stress approach. The strain-energy method turns out to be more stable against the numerical errors than the strain-stress approach, which requires smaller tolerance for the precision of the self-consistent calculations. The SOECs, extracted by the method of least squares, are consistent with the experimental data and the previousab initiocalculations. Then, we investigate the biaxial relaxation coefficient for AlN, GaN, and InN, subjected to biaxial stress in the plane perpendicular to thecaxis of the wurtzite structure. This coefficient determines the relationship between the in-plane and out-of-plane strain components in thin films and quantum wells grown onc-plane substrates. We demonstrate that for InN and AlN, the biaxial relaxation coefficient increases significantly with the in-plane strain, whereas it shows the opposite behavior in GaN. These results are well described by the third-order elasticity theory and they cannot be modeled by the linear theory of elasticity, which predicts no dependence of the biaxial relaxation coefficient on the in-plane strain. Therefore, the obtained TOECs should prove very useful for the modelling of strain-related phenomena in heterostructures, nanostructures and devices made of the group-III nitride semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...