Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 236(8): 1080-1092, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35735142

RESUMO

Emerging systems in microfluidics are embracing bio-inspired designs in which boundaries are flexible and mimic peristaltic propulsion mechanisms encountered in nature. These devices utilize electro-kinetic body forces to manipulate very precisely ionic biofluids for a range of medical applications including. Motivated by exploring in more detail electro-hemorheological micro-pumping, in the current article, a mathematical model is developed for peristalsis propulsion of a viscoelastic biofluid in a curved microchannel with electro-osmotic effect and thermal transport under static axial electrical field and with viscous heating. The third grade Reiner-Rivlin model is deployed for blood rheology. The novelty of the current work is therefore the simultaneous consideration of electrokinetics, viscoelastic behavior with the third grade Reiner-Rivlin model and coupled flow and heat transport with viscous dissipation in peristaltic pumping in a curved micro-channel. A Poisson-Boltzmann formulation is adopted to simulate the charge number density associated with the electrical potential. Asymmetric zeta potential (25 mV) is prescribed and mobilizes an electric double layer (EDL). The governing conservation equations for mass, energy, momentum and electrical potential with associated boundary conditions are simplified using lubrication approximations and rendered dimensionless via appropriate scaling transformations. Analytical solutions are derived in the form of Bessel functions and numerical evaluations are conducted via the ND solver command in MATHEMATICA symbolic software. The simulations show that with stronger viscoelastic effect, boluses are eliminated and there is relaxation in streamlines in the core and peripheral regions of the micro-channel. Increasing Brinkman number (dissipation parameter) elevates temperatures. An increase in electrical double layer thickness initially produces a contraction in the upper bolus and an expansion (lateral) in the lower bolus in the micro-channel. With modification in zeta potential ratio parameter from positive to negative values, in the lower half of the micro-channel, axial flow deceleration is generated.


Assuntos
Temperatura Alta , Peristaltismo , Cinética , Modelos Teóricos , Viscosidade
2.
J Biomech Eng ; 143(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462593

RESUMO

Mathematical modeling of mechanical system in microfluidics is an emerging area of interest in microscale engineering. Since microfluidic devices use the hair-like structure of artificial cilia for pumping, mixing, and sensing in different fields, electro-osmotic cilia-driven flow helps to generate the fluid velocity for the Newtonian and viscoelastic fluid. Due to the deployment of artificial ciliated walls, the present research reports the combined effect of an electro-osmotic flow and convective heat transfer on Jeffrey viscoelastic electrolytic fluid flow in a two-dimensional ciliated vertical channel. Heat generation/absorption and nonlinear radiation effects are included in the present mathematical model. After applying Debye-Huckel approximation and small Reynolds number approximation to momentum and energy equation, the system of nonlinear partial differential equation is reduced into nonhomogenous boundary value problem. The problem determines the velocity, pressure, and temperature profiles by the application of semi-analytical technique known as homotopy perturbation method (HPM) with the help of software Mathematica. The graphical results of the study suggest that HPM is a reliable methodology for thermo physical electro-osmotic rheological transport in microchannels.


Assuntos
Temperatura Alta , Reologia
3.
Comput Methods Biomech Biomed Engin ; 23(8): 345-371, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32098508

RESUMO

This article presents a two-dimensional theoretical study of hemodynamics through a diseased permeable artery with a mild stenosis and an aneurysm present. The effect of metallic nanoparticles on the blood flow is considered, motivated by drug delivery (pharmacology) applications. Two different models are adopted to mimic non-Newtonian characteristics of the blood flow; the Casson (viscoplastic) fluid model is deployed in the core region and the Sisko (viscoelastic) fluid model employed in the peripheral (porous) region. The revised Buongiorno two-component nanofluid model is utilized for nanoscale effects. The blood is considered to contain a homogenous suspension of nanoparticles. The governing equations are derived by extending the Navier-Stokes equations with linear Boussinesq approximation (which simulates both heat and mass transfer). Natural (free) double-diffusive convection is considered to simulate the dual influence of thermal and solutal buoyancy forces. The conservation equations are normalised by employing appropriate non-dimensional variables. The transformed equations are solved numerically using the finite element method with the variational formulation scheme available in the FreeFEM++ code. A comprehensive mesh-independence study is included. The effect of selected parameters (thermophoresis, Brownian motion, Grashof number, thermo-solutal buoyancy ratio, Sisko parameter ratio, and permeability parameter) on velocity, temperature, nanoparticle concentration, and hemodynamic pressure have been calculated for two clinically important cases of arteries with stenosis and an aneurysm. Skin-friction coefficient, Nusselt number, volumetric flow rate, and resistance impedance of blood flow are also computed. Colour contours and graphs are employed to visualize the simulated blood flow characteristics. It is observed that by increasing the thermal buoyancy parameter, i.e. Grashof number (Gr), the nanoparticle concentration and temperature decrease, whereas velocity increases with an increment in the Brownian motion parameter (Nb). Furthermore, velocity decreases in the peripheral porous region with elevation in the Sisko material ratio (m) and permeability parameter (k'). The simulations are relevant to transport phenomena in pharmacology and nano-drug targeted delivery in haematology.


Assuntos
Aneurisma/fisiopatologia , Artérias/fisiopatologia , Simulação por Computador , Hemodinâmica/fisiologia , Hidrodinâmica , Nanopartículas/química , Constrição Patológica , Fricção , Movimento (Física) , Análise Numérica Assistida por Computador , Porosidade , Reologia , Temperatura
4.
J Biomech Eng ; 141(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383183

RESUMO

Embryological transport features a very interesting and complex application of peristaltic fluid dynamics. Electro-osmotic phenomena are also known to arise in embryo transfer location. The fluid dynamic environment in embryological systems is also known to be non-Newtonian and exhibits strong viscoelastic properties. Motivated by these applications, the present article develops a new mathematical model for simulating two-dimensional peristaltic transport of a viscoelastic fluid in a tapered channel under the influence of electro-osmosis induced by asymmetric zeta potentials at the channel walls. The robust Jeffrey viscoelastic model is utilized. The finite Debye layer electro-kinetic approximation is deployed. The moving boundary problem is transformed to a steady boundary problem in the wave frame. The current study carries significant physiological relevance to an ever-increasing desire to study intrauterine fluid flow motion in an artificial uterus. The consequences of this model may introduce a new mechanical factor for embryo transport to a successful implantation site. Hydrodynamic characteristics are shown to be markedly influenced by the electro-osmosis, the channel taper angle, and the phase shift between the channel walls. Furthermore, it is demonstrated that volumetric flow rates and axial flow are both enhanced when the electro-osmotic force aids the axial flow for specific values of zeta potential ratio. Strong trapping of the bolus (representative of the embryo) is identified in the vicinity of the channel central line when the electro-osmosis opposes axial flow. The magnitude of the trapped bolus is observed to be significantly reduced with increasing tapered channel length whereas embryo axial motility is assisted with aligned electro-osmotic force.

5.
Microvasc Res ; 117: 28-36, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305878

RESUMO

An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter.


Assuntos
Simulação por Computador , Microcirculação , Microvasos/fisiologia , Modelos Cardiovasculares , Animais , Velocidade do Fluxo Sanguíneo , Viscosidade Sanguínea , Eletro-Osmose , Humanos , Hidrodinâmica , Microvasos/metabolismo , Fluxo Sanguíneo Regional
6.
J Theor Biol ; 397: 22-32, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26903204

RESUMO

Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics.


Assuntos
Algoritmos , Fenômenos Fisiológicos Bacterianos , Hidrodinâmica , Modelos Biológicos , Bactérias/classificação , Bactérias/citologia , Aderência Bacteriana/fisiologia , Biofísica , Movimento/fisiologia , Reologia , Propriedades de Superfície , Viscosidade
7.
Med Biol Eng Comput ; 54(9): 1423-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26541601

RESUMO

The unsteady flow characteristics of blood are analyzed through a catheterized stenotic artery with post-stenotic dilatation. A rigid tube with a pair of abnormal wall segments in close proximity to each other is employed to geometrically simulate the diseased artery. A micropolar fluid model is used to capture the rheological characteristics of the streaming blood in the annulus. The mild stenosis approximation is employed to derive the governing flow equation which is then solved using a robust finite difference method. Particular attention is paid to the effects of geometrical parameters of the arterial wall and rheological parameters of the blood on axial velocity, flow rate, resistance impedance and wall shear stress. The global behavior of blood is also analyzed through instantaneous pattern of streamlines.


Assuntos
Aneurisma/sangue , Constrição Patológica/sangue , Hemodinâmica , Algoritmos , Aneurisma/fisiopatologia , Artérias/fisiologia , Cateterismo Periférico , Simulação por Computador , Constrição Patológica/fisiopatologia , Humanos , Modelos Cardiovasculares , Modelos Teóricos , Fluxo Sanguíneo Regional
8.
Artigo em Inglês | MEDLINE | ID: mdl-26158210

RESUMO

Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n < 1) greater Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.


Assuntos
Modelos Teóricos , Peristaltismo/fisiologia , Líquidos Corporais/fisiologia , Humanos , Reprodutibilidade dos Testes , Reologia , Viscosidade
9.
Comput Methods Biomech Biomed Engin ; 18(15): 1648-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25059738

RESUMO

This paper studies the peristaltic transport of a viscoelastic fluid (with the fractional second-grade model) through an inclined cylindrical tube. The wall of the tube is modelled as a sinusoidal wave. The flow analysis is presented under the assumptions of long wave length and low Reynolds number. Caputo's definition of fractional derivative is used to formulate the fractional differentiation. Analytical solutions are developed for the normalized momentum equations. Expressions are also derived for the pressure, frictional force, and the relationship between the flow rate and pressure gradient. Mathematica numerical computations are then performed. The results are plotted and analysed for different values of fractional parameter, material constant, inclination angle, Reynolds number, Froude number and peristaltic wave amplitude. It is found that fractional parameter and Froude number resist the flow pattern while material constant, Reynolds number, inclination of angle and amplitude aid the peristaltic flow. Furthermore, frictional force and pressure demonstrate the opposite behaviour under the influence of the relevant parameters emerging in the equations of motion. The study has applications in uretral biophysics, and also potential use in peristaltic pumping of petroleum viscoelastic bio-surfactants in chemical engineering and astronautical applications involving conveyance of non-Newtonian fluids (e.g. lubricants) against gravity and in conduits with deformable walls.


Assuntos
Fenômenos Biofísicos , Simulação por Computador , Elasticidade , Análise Numérica Assistida por Computador , Peristaltismo/fisiologia , Reologia , Transporte Biológico , Fricção , Modelos Biológicos , Modelos Teóricos , Pressão , Viscosidade
10.
Comput Biol Med ; 44: 44-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24377688

RESUMO

Magnetic fields have been shown to achieve excellent fabrication control and manipulation of conductive bio-polymer characteristics. To simulate magnetohydrodynamic effects on non-Newtonian electro-conductive bio-polymers (ECBPs) we present herein a theoretical and numerical simulation of free convection magneto-micropolar biopolymer flow over a horizontal circular cylinder (an "enrobing" problem). Eringen's robust micropolar model (a special case of the more general micro-morphic or "microfluid" model) is implemented. The transformed partial differential conservation equations are solved numerically with a powerful and new code based on NSM (Network Simulation Method) i.e. PSPICE. An extensive range of Hartmann numbers, Grashof numbers, micropolar parameters and Prandtl numbers are considered. Excellent validation is also achieved with earlier non-magnetic studies. Furthermore the present PSPICE code is also benchmarked with an implicit tridiagonal solver based on Nakamura's method (BIONAK) again achieving close correlation. The study highlights the excellent potential of both numerical methods described in simulating nonlinear biopolymer micro-structural flows.


Assuntos
Biopolímeros/química , Simulação por Computador , Condutividade Elétrica , Campos Magnéticos , Modelos Químicos
11.
Math Biosci ; 248: 67-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24300568

RESUMO

A mathematical study of the peristaltic flow of complex rheological viscoelastic fluids using the generalized fractional Burgers' model through a non-uniform channel is presented. This model is designed to study the movement of chyme and undigested chyme (biophysical waste materials) through the small intestine to the large intestine. To simulate blockages and impedance of debris generated by cell shedding, infections, adhesions on the wall and undigested material, a drag force porous media model is utilized. This effectively mimicks resistance to chyme percolation generated by solid matrix particles in the regime. The conduit geometry is mathematically simulated as a sinusoidal propagation with linear increment in shape of the bolus along the length of channel. A modified Darcy-Brinkman model is employed to simulate the generalized flows through isotropic, homogenous porous media, a simplified but physically robust approximation to actual clinical situations. To model the rheological properties of chyme, a viscoelastic Burgers' fluid formulation is adopted. The governing equations are simplified by assuming long wavelength and low Reynolds number approximations. Numerical and approximate analytical solutions are obtained with two semi-numerical techniques, namely the homotopy perturbation method and the variational iteration method. Visualization of the results is achieved with Mathematica software. The influence of the dominant hydromechanical and geometric parameters such as fractional viscoelastic parameters, wave number, non-uniformity constant, permeability parameter, and material constants on the peristaltic flow characteristics are depicted graphically.


Assuntos
Enteropatias/fisiopatologia , Modelos Biológicos , Peristaltismo/fisiologia , Fenômenos Biofísicos , Líquidos Corporais/fisiologia , Elasticidade , Conteúdo Gastrointestinal , Humanos , Conceitos Matemáticos , Porosidade , Reologia , Viscosidade
12.
Comput Biol Med ; 43(9): 1142-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23930807

RESUMO

In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge-Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ, which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number (Ha) and transpiration Reynolds number (mass transfer parameter, Re) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems.


Assuntos
Viscosidade Sanguínea , Simulação por Computador , Campos Magnéticos , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Humanos , Porosidade
13.
Math Biosci ; 246(1): 72-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911695

RESUMO

Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.


Assuntos
Hidrodinâmica , Modelos Biológicos , Peristaltismo/fisiologia , Reologia/estatística & dados numéricos , Animais , Transporte Biológico , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...