Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17665, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776377

RESUMO

A detailed understanding of the optical properties of self-catalysed (SC), zinc blende (ZB) dominant, nanowires (NWs) is crucial for the development of functional and impurity-free nanodevices. Despite the fact that SC InAs NWs mostly crystallize in the WZ/ZB phase, there are very limited reports on the photoluminescence (PL) properties of ZB InAs NWs. Here, we report on the PL properties of Molecular Beam Epitaxy grown, SC InAs NWs. The as-grown NWs exhibit a dominant band to band (BtB) peak associated with ZB, InAs with an emission energy of ~0.41 eV in good agreement with the band gap energy of ZB InAs and significantly lower than that of the wurtzite phase (~0.48 eV). The strong BtB peak persists to near room temperature with a distinct temperature-dependent red-shift and very narrow spectral linewidth of ~20 meV (10 K) which is much smaller than previously reported values. A narrowing in PL linewidth with increasing NWs diameter is correlated with a decline in the influence of surface defects resulting from an enlargement in NWs diameter. This study demonstrates the high optical property of SC InAs NWs which is compatible with the Si-complementary metal-oxide-semiconductor technology and paves the way for the monolithic integration of InAs NWs with Si in novel nanodevices.

2.
Nano Lett ; 15(7): 4348-55, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26086785

RESUMO

The monolithic integration of InAs(1-x)Sb(x) semiconductor nanowires on graphitic substrates holds enormous promise for cost-effective, high-performance, and flexible devices in optoelectronics and high-speed electronics. However, the growth of InAs(1-x)Sb(x) nanowires with high aspect ratio essential for device applications is extremely challenging due to Sb-induced suppression of axial growth and enhancement in radial growth. We report the realization of high quality, vertically aligned, nontapered and ultrahigh aspect ratio InAs(1-x)Sb(x) nanowires with Sb composition (xSb(%)) up to ∼12% grown by indium-droplet assisted molecular beam epitaxy on graphite substrate. Low temperature photoluminescence measurements show that the InAs(1-x)Sb(x) nanowires exhibit bright band-to-band related emission with a distinct redshift as a function of Sb composition providing further confirmation of successful Sb incorporation in as-grown nanowires. This study reveals that the graphite substrate is a more favorable platform for InAs(1-x)Sb(x) nanowires that could lead to hybrid heterostructures possessing potential device applications in optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...