Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4): L042601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755845

RESUMO

We use the discrete element method, taking particle contact and hydrodynamic lubrication into account, to unveil the shear rheology of suspensions of frictionless non-Brownian rods in the dense packing fraction regime. We find that, analogously to the random close packing volume fraction, the shear-driven jamming point of this system varies in a nonmonotonic fashion as a function of the rod aspect ratio. The latter strongly influences how the addition of rodlike particles affects the rheological response of a suspension of frictionless non-Brownian spheres to an external shear flow. At fixed values of the total (rods plus spheres) packing fraction, the viscosity of the suspension is reduced by the addition of "short"(≤2) rods but is instead increased by the addition of "long"(≥2) rods. A mechanistic interpretation is provided in terms of packing and excluded-volume arguments.

2.
J Phys Chem Lett ; 14(39): 8846-8852, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751526

RESUMO

In many colloidal suspensions, the dispersed colloidal particles are amorphous solids, resulting from vitrification. A crucial open problem is understanding how colloidal stability is affected by the intraparticle glass transition. By dealing with the latter process from a solid-state perspective, we estabilish a proportionality relation between the intraparticle glass transition temperature, Tg, and the Hamaker constant, AH, of a generic suspension of nanoparticles. It follows that Tg can be used as a convenient parameter (alternative to AH) for controlling the stability of colloidal systems. Within the Derjaguin-Landau-Verwey-Overbeek theory, we show that the novel relationship, connecting Tg to AH, implies the critical coagulation ionic strength to be a monotonically decreasing function of Tg. We connect our predictions to recent experimental findings.

3.
J Chem Phys ; 158(4): 044901, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725501

RESUMO

We show that an analogy between crowding in fluid and jammed phases of hard spheres captures the density dependence of the kissing number for a family of numerically generated jammed states. We extend this analogy to jams of mixtures of hard spheres in d = 3 dimensions and, thus, obtain an estimate of the random close packing volume fraction, ϕRCP, as a function of size polydispersity. We first consider mixtures of particle sizes with discrete distributions. For binary systems, we show agreement between our predictions and simulations using both our own results and results reported in previous studies, as well as agreement with recent experiments from the literature. We then apply our approach to systems with continuous polydispersity using three different particle size distributions, namely, the log-normal, Gamma, and truncated power-law distributions. In all cases, we observe agreement between our theoretical findings and numerical results up to rather large polydispersities for all particle size distributions when using as reference our own simulations and results from the literature. In particular, we find ϕRCP to increase monotonically with the relative standard deviation, sσ, of the distribution and to saturate at a value that always remains below 1. A perturbative expansion yields a closed-form expression for ϕRCP that quantitatively captures a distribution-independent regime for sσ < 0.5. Beyond that regime, we show that the gradual loss in agreement is tied to the growth of the skewness of size distributions.

4.
Phys Rev E ; 106(4-1): 044610, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397599

RESUMO

We present a theoretical framework to investigate the microscopic structure of concentrated hard-sphere colloidal suspensions under strong shear flows by fully taking into account the boundary-layer structure of convective diffusion. We solve the pair Smoluchowski equation with shear separately in the compressing and extensional sectors of the solid angle, by means of matched asymptotics. A proper, albeit approximate, treatment of the hydrodynamic interactions in the different sectors allows us to construct a potential of mean force containing the effect of the flow field on pair correlations. We insert the obtained pair potential in the Percus-Yevick relation and use the latter as a closure to solve the Ornstein-Zernike integral equation. For a wide range of either the packing fraction η and the Péclet (Pe) number, we compute the pair correlation function and extract scaling laws for its value at contact. For all the considered values of Pe, we observe a very good agreement between theoretical findings and numerical results from the literature, up to rather large values of η. The theory predicts a consistent enhancement of the structure factor S(k) at k→0, upon increasing the Pe number. We argue this behavior may signal the onset of a phase transition from the isotropic phase to a nonuniform one, induced by the external shear flow.

5.
Phys Rev E ; 105(2): L022701, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291166

RESUMO

Using a grand-canonical Landau-de Gennes theory for colloidal suspensions of bent (banana-shaped) rods, we investigate how spatial deformations in the nematic director field affect the local density of twist-bend and splay-bend nematic phases. The grand-canonical character of the theory naturally relates the local density to the local nematic order parameter S. In the splay-bend phase, we find S and hence the local density to modulate periodically along one spatial direction. As a consequence the splay-bend phase has the key symmetries of a smectic rather than a nematic phase. By contrast we find that S and hence the local density do not vary in space in the twist-bend phase, which is therefore a proper nematic phase. The theoretically predicted one-dimensional density modulations in splay-bend phases are in agreement with recent simulations.

6.
Soft Matter ; 17(4): 965-975, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33284927

RESUMO

Inspired by recent experimental observations of spontaneous chain formation of cubic particles adsorbed at a fluid-fluid interface, we theoretically investigate whether capillary interactions can be responsible for this self-assembly process. We calculate adsorption energies, equilibrium particle orientations, and interfacial deformations, not only for a variety of contact angles but also for single cubes as well as an infinite 2D lattice of cubes at the interface. This allows us to construct a ground-state phase diagram as a function of areal density for several contact angles, and upon combining the capillary energy of a 2D lattice with a simple expression for the entropy of a 2D fluid we also construct temperature-density or size-density phase diagrams that exhibit large two-phase regions and triple points. We identify several regimes with stable chainlike structures, in line with the experimental observations.

7.
J Chem Phys ; 152(22): 224502, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534541

RESUMO

We develop a phenomenological Landau-de Gennes (LdG) theory for lyotropic colloidal suspensions of bent rods using a Q-tensor expansion of the chemical-potential dependent grand potential. In addition, we introduce a bend flexoelectric term, coupling the polarization and the divergence of the Q-tensor, to study the stability of uniaxial (N), twist-bend (NTB), and splay-bend (NSB) nematic phases of colloidal bent rods. We first show that a mapping can be found between the LdG theory and the Oseen-Frank theory. By breaking the degeneracy between the splay and bend elastic constants, we find that the LdG theory predicts either an N-NTB-NSB or an N-NSB-NTB phase sequence upon increasing the particle concentration. Finally, we employ our theory to study the first-order N-NTB phase transition, for which we find that K33 as well as its renormalized version K33 eff remain positive at the transition, whereas K33 eff vanishes at the nematic spinodal. We connect these findings to recent simulation results.

8.
Soft Matter ; 15(12): 2638-2647, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30854540

RESUMO

We numerically investigate the adsorption of a variety of Janus particles (dumbbells, elongated dumbbells and spherocylinders) at a fluid-fluid interface by using a numerical method that takes into account the interfacial deformations. We first determine the equilibrium configuration of a single adsorbed particle, and we find that the overall shape of the induced deformation field has a strong hexapolar mode while non-Janus particles of the same shape do not induce any interfacial deformation. We then calculate the capillary interactions between two Janus spherocylinders adsorbed at an interface. The hexapolar deformation field induces capillary attractions for laterally aligned Janus spherocylinders and repulsions for laterally anti-aligned ones. We also experimentally synthesize micrometer-sized charged Janus dumbbells and let them adsorb at a water-decane interface. After several hours we observe the formation of aggregates of dumbbells predominantly induced by interactions that appear to be capillary in nature. Our Janus dumbbells attach laterally and are all aligned, as predicted by our numerical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...