Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Pharmacol ; 13: 1043945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506525

RESUMO

Renal ischemia-reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI). It poses a significant threat to public health, and effective therapeutic drugs are lacking. Mefunidone (MFD) is a new pyridinone drug that exerts a significant protective effect on diabetic nephropathy and the unilateral ureteral obstruction (UUO) model in our previous study. However, the effects of mefunidone on ischemia-reperfusion injury-induced acute kidney injury remain unknown. In this study, we investigated the protective effect of mefunidone against ischemia-reperfusion injury-induced acute kidney injury and explored the underlying mechanism. These results revealed that mefunidone exerted a protective effect against ischemia-reperfusion injury-induced acute kidney injury. In an ischemia-reperfusion injury-induced acute kidney injury model, treatment with mefunidone significantly protected the kidney by relieving kidney tubular injury, suppressing oxidative stress, and inhibiting kidney tubular epithelial cell apoptosis. Furthermore, we found that mefunidone reduced mitochondrial damage, regulated mitochondrial-related Bax/bcl2/cleaved-caspase3 apoptotic protein expression, and protected mitochondrial electron transport chain complexes III and V levels both in vivo and in vitro, along with a protective effect on mitochondrial membrane potential in vitro. Given that folic acid (FA)-induced acute kidney injury is a classic model, we used this model to further validate the efficacy of mefunidone in acute kidney injury and obtained the same conclusion. Based on the above results, we conclude that mefunidone has potential protective and therapeutic effects in both ischemia-reperfusion injury- and folic acid-induced acute kidney injury.

3.
BMC Nephrol ; 22(1): 11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413146

RESUMO

BACKGROUND: AarF domain-containing kinase 4 (ADCK4)-associated glomerulopathy is a mitochondrial nephropathy caused by mutations in the ADCK4 gene, which disrupt coenzyme Q10 biosynthesis. CASE PRESENTATION: We report the case of a 25-year-old female patient with ADCK4-associated glomerulopathy presenting with proteinuria (and with no additional systemic symptoms). A known missense substitution c.737G > A (p.S246N) and a novel frameshift c.577-600del (p.193-200del) mutation were found. We followed the patient for 24 months during supplementation with coenzyme Q10 (20 mg/kg/d - 30 mg/kg/d) and describe the clinical course. In addition, we measured serum and urine coenzyme Q10 levels before and after coenzyme Q10 supplementation and compared them with those of healthy control subjects. The patient's urinary coenzyme Q10 to creatinine ratio was higher than that of healthy controls before coenzyme Q10 supplementation, but decreased consistently with proteinuria after coenzyme Q10 supplementation. CONCLUSIONS: Although the use of urinary coenzyme Q10 as a diagnostic biomarker and predictor of clinical remission in patients with ADCK4-associated glomerulopathy should be confirmed by larger studies, we recommend measuring urinary coenzyme Q10 in patients with isolated proteinuria of unknown cause, since it may provide a diagnostic clue to mitochondrial nephropathy.


Assuntos
Nefropatias/urina , Glomérulos Renais , Proteínas Quinases , Ubiquinona/análogos & derivados , Adulto , Biomarcadores/urina , Feminino , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Mutação , Valor Preditivo dos Testes , Prognóstico , Proteínas Quinases/genética , Ubiquinona/urina
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(12): 1403-1408, 2021 Dec 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35232911

RESUMO

Diabetic kidney disease (DKD) is one of the serious microvascular complications of diabetes mellitus (DM), and it is also the leading cause for the end-stage kidney disease (ESKD), but the clinical treatment for it is limited at present. The pathogenesis of DKD is complex. Many studies have shown that podocyte injury is the core event of DKD, and oxidative stress is closely related to podocyte injury in DKD. Oxidative stress mediates podocyte apoptosis and slit diaphragm damage in DKD through various pathways. The antioxidant drugs can slow down the progression of DKD through reducing podocyte injury and are expected to enter clinical trials. The research status of antioxidant drugs is very important, which will provide new strategies for the clinical treatment of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Falência Renal Crônica , Podócitos , Apoptose , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Estresse Oxidativo , Podócitos/metabolismo , Podócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...