Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 119984, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38218166

RESUMO

Here, Fe/N co-doped porous biochars (FeNKBCs) were obtained by grinding corncob, CH3COOK, FeCl3·6H2O, and C3H6N6 via one-step synthesis and were applied to remove antibiotics from wastewater. Notably, CH3COOK had an excellent porous activation ability. The developed nanotubular structure of Fe1N2KBC had a high pore volume (Vtotal) (1.2131 cm3/g) and specific surface areas (SSA) (2083.54 m2/g), which showed outstanding sorption abilities for TC (764.35 mg/g), OTC (560.82 mg/g), SMX (291.45 mg/g), and SMT (354.65 mg/g). The adsorption process of TC was controlled by chemisorption. Moreover, Fe1N2KBC has an excellent dynamic adsorption performance (620.14 mg/g) in a fixed-bed column. The properties of SSA, Vtotal, and the content of graphite N and Fe-N were positively correlated with TC adsorption capacity. The high performance of TC removal was related to π-π stacking, pore-filling, hydrogen bond, and electrostatic interaction. Fe1N2KBC possessed stable sorption amounts in pH 2-12 and actual water, and well reuse performance. The results of this work present an effective preparation method of Fe/N porous biochar for TC-contaminated water remediation.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Porosidade , Nitrogênio , Água , Poluentes Químicos da Água/análise , Antibacterianos , Tetraciclina , Carvão Vegetal/química , Cinética
2.
J Hazard Mater ; 465: 133447, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219579

RESUMO

Traditional Chinese medicine materials (TCMMs) are widely planted and used, while cadmium (Cd) is a widespread pollutant that poses a potential risk to plant growth and human health. However, studies on the influences of Cd on TCMMs have been limited. Our study aims to reveal the antioxidation-related detoxification mechanism of Polygonatum cyrtonema Hua under Cd stress based on physiology and metabolomics. The results showed that Cd0.5 (total Cd: 0.91 mg/kg; effective Cd: 0.45 mg/kg) induced hormesis on the biomass of roots, tubers and aboveground parts with increases of 22.88%, 27.12% and 17.02%, respectively, and significantly increased the flavonoids content by 57.45%. Additionally, the metabolism of caffeine, glutamine, arginine and purine was upregulated to induce hormesis in Cd0.5, which enhanced the synthesis of resistant substances such as spermidine, choline, IAA and saponins. Under Cd2 stress, choline and IAA decreased, and fatty acid metabolites (such as peanut acid and linoleic acid) and 8-hydroxyguanosine increased in response to oxidative damage, resulting in a significant biomass decrease. Our findings further reveal the metabolic process of detoxification by antioxidants and excessive Cd damage in TCMMs, deepen the understanding of detoxification mechanisms related to antioxidation, and enrich the relevant theories of hormesis induced by Cd.


Assuntos
Hormese , Polygonatum , Humanos , Cádmio , Antioxidantes/farmacologia , Colina
3.
Int J Biol Macromol ; 255: 127534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866565

RESUMO

The objective of this work is utilizing fly ash to synthesize tobermorite (TOB) with a higher specific surface area and layered structure, and incorporating it into the starch/acrylic acid network to boost the drought resistance, water retention and heavy metal adsorption properties. The water absorption and water retention performance and cadmium adsorption characteristics of tobermorite/leftover rice-based composite hydrogel (TOB@LR-CH) were evaluated by water absorption swelling test, soil evaporation test and batch adsorption experiment. By adjusting the addition of TOB and other synthesized conditions, the swelling property (from 114.80 g/g to 322.64 g/g), water retention (71.80 %, 144 h) and Cd2+ adsorption characteristics (up to 591.36 mg/g) were significantly enhanced. Adding a moderate amount of TOB (2 wt%) provided the most uniform tobermorite dispersion during synthesis, and TOB2@LR-CH exhibited the most stable three-dimensional network and highest proportion of effective TOB. The adsorption behavior of cadmium on TOB2@LR-CH was more consistent with the pseudo-second-order kinetics and Langmuir isotherm models. Additionally, the regeneration test results displayed that the adsorption removal rate of cadmium by TOB2@LR-CH adsorbent remained stable after 5 cycles. This study demonstrates that TOB@LR-CH has good water absorption and water retention potential in arid and semi-arid soils, and also has potential application prospects in remediating Cd(II)-contaminated soil.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/química , Hidrogéis , Água , Amido , Secas , Adsorção , Poluentes Químicos da Água/química , Cinética , Solo
4.
Sci Total Environ ; 913: 169741, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160833

RESUMO

Due to the increasing scarcity of wild resources, most traditional Chinese medicinal materials (TCMMs) in the market are produced via artificial cultivation. The widespread pollution of cadmium (Cd) in soil limits the safe cultivation and use of TCMMs. This study investigated Cd accumulation, distribution, and the medicinal component content under simulated field conditions to clarify the differences in the Cd absorption, transfer and detoxification mechanisms of Polygonatum cyrtonema Hua and Bletilla striata, and provide the preliminary safe utilization conditions of TCMMs based on the analytic hierarchy process (AHP). The results showed that the Cd content of P. cyrtonema Hua was lower than the safety threshold under a high soil Cd concentration of 0.91 mg/kg (Cd-L), while B. striata was safe only at a low Cd concentration of 0.25 mg/kg (CK). Cd at 0.91 mg/kg induced hormesis affecting the net increase in biomass and medicinal component content for both TCMMs, while P. cyrtonema Hua showed better potential for safe utilization. Additionally, P. cyrtonema Hua had stronger resistance to Cd stress, exhibiting superior characteristics for synergistic absorption of Cd with mineral elements, transfer to nonmedical part and safer fixation forms in subcellular components. In contrast, B. striata showed insufficient Cd tolerance, and Cd was easily accumulated in organelles to inhibit plant growth. Our findings may attract more attention to the safe cultivation of TCMMs and provide insight into guidance for the safe utilization of slightly Cd-contaminated soil.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Processo de Hierarquia Analítica , Biomassa , Minerais , Solo , Poluentes do Solo/análise
5.
J Hazard Mater ; 459: 132275, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37579717

RESUMO

Soil cadmium (Cd) pollution poses a considerable threat to the safe production of traditional Chinese medicine (TCM) in China. The tubers of Bletilla striata, a precious TCM, are widely used to treat various ailments. However, the medicinal safety and quality of tubers are significantly affected by high Cd accumulation. While selenium (Se) is known to reduce Cd concentration in traditional crops, its impact on Cd content in medicinal parts and overall quality remains underexplored. To bridge the gap, a pot experiment and field validation were conducted to determine the effectiveness of foliar Se application. The results revealed that Se effectively counteracted Cd damage. Compared to Cd treatment alone, Se at 1.5 mg L-1 significantly decreased Cd content by 46.33 %, increased the biomass by 21.48 %, and raised the total phenolic, flavonoid, saponin, and polysaccharide contents by 46.31 %, 30.46 %, 27.08 %, and 29.01 %, respectively, in tubers. Furthermore, this study explored the mechanism of Se action. Se facilitated Cd accumulation in root cell walls and soluble fractions, enhanced the synthesis of phytochelatins (PC), and stored them in the form of PC-Cd complexes. These findings have profound implications for the cultivation of TCM, ensuring its safety, and promoting sustainable agricultural practices.


Assuntos
Oryza , Selênio , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Agricultura , Poluição Ambiental , Poluentes do Solo/análise , Solo
6.
J Colloid Interface Sci ; 650(Pt B): 1244-1252, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478741

RESUMO

Constructing pseudocapacitive electrodes with high specific capacities is indispensable for increasing the large-scale application of capacitive deionization (CDI). However, the insufficient CDI rate and cycling performance of pseudocapacitive-based electrodes have led to a decline in their use due to the corresponding volumetric expansion and contraction that occurs during long-term CDI processes. Herein, hierarchical porous SnS2 nanoflakes are encapsulated inside an N-doped carbon (NC) matrix to achieve efficient CDI. Benefiting from the synergistic properties of the pseudocapacitive SnS2 nanoflakes and few-layered N-doped carbon, the heterogeneous interface simultaneously provides more available vigorous sites and demonstrates rapid charge-transfer kinetics, resulting in a superior desalination capability (49.86 mg g-1 at 1.2 V), rapid desalination rate (1.66 mg g-1 min-1) and better cyclic stability. Computational research reveals a work function-induced surface charge redistribution of the SnS2@NC heterojunction, which can lead to an auspicious surface electronic structure that reduces the adsorption energy to improve the diffusion kinetics toward sodium adsorption. This work contributes to providing a thoughtful understanding of the interface engineering between transition metal dichalcogenides and NC to construct high-performance CDI electrode materials for further industrialization.

7.
Environ Technol ; : 1-15, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191243

RESUMO

Excessive phosphorus discharge causes water eutrophication and disturbs the homeostasis of aquatic ecosystems. Capacitive deionization (CDI) has been proven to be a more energy-efficient and environmentally friendly technology for removing phosphorus. Raw carbon (Raw C) electrodes are widely used in CDI. However, the phosphorus removal capacity of most unmodified Raw C still needs to be enhanced. Therefore, the Fe, N-co-doped carbon prepared in this study was expected to further improve the phosphorus removal performance. Herein, the optimal electrode with 5% Fe (FeNC) had an approximately 2.7 times higher adsorption capacity than Raw C. At a low concentration (5 mg P/L), FeNC exhibited a high maximum removal capacity of 4.28 mg P/g. Under reversed voltage, the phosphorus was easily desorbed by deionized water. Ion competition studies showed that coexisting ions adversely affected phosphorus adsorption onto FeNC in the order SO42- > NO3- > Cl-. Furthermore, the energy consumption of FeNC was calculated to be as low as 0.0069 kWh/g P and 0.023 kWh/m3 water under 1.2 V. More importantly, phosphorus removal by FeNC during CDI was demonstrated in simulated natural water from the Jinjiang River (Chengdu, China). This study indicated that FeNC is expected to be a potential electrode for CDI dephosphorization.

8.
Int J Biol Macromol ; 241: 124596, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37116842

RESUMO

Capacitive deionization (CDI) using porous materials offers a sustainable solution for providing affordable freshwater, but the low salt adsorption rate of benchmark carbon materials significantly limit the practical implementation. Herein, we utilized carboxymethyl cellulose sodium (CMC) as the carbon skeleton to produce a composite carbon aerogel loaded with ZIF-8 (ZIF-8/CMC-CA). The presence of ZIF-8 nanoparticles improved the pore structure of the material and provides a certain pseudo capacitance by introducing N. Compared with ZIF-8 derived carbons (ZIF-8-C), the CMC provided a good three-dimensional structure for the dispersion of ZIF-8 nanoparticles, reduced the agglomeration of particles. Furthermore, numerous carboxyl and hydroxyl groups on CMC enhanced the hydrophilicity of materials. Due to the interconnected structure, ZIF-8/CMC-CA exhibited excellent conductivity, a high specific surface area, and offered suitable channels for the rapid entry and exit of ions. In a three-electrode system, the total specific capacitance of the ZIF-8/CMC-CA electrode was 357.14 F g-1. The adsorption rate of ZIF-8/CMC-CA was 2.02 mg g-1 min-1 in a 500 mg L-1 NaCl solution. This study may provide new insight for modifying and fabricating electrode materials for practical CDI applications.


Assuntos
Carbono , Estruturas Metalorgânicas , Carbono/química , Carboximetilcelulose Sódica , Porosidade , Cloreto de Sódio/química
9.
Environ Technol ; 44(10): 1505-1517, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34762018

RESUMO

ABSTRACTCapacitive deionization (CDI) is an environmentally friendly desalination technique with low energy consumption. However, unmodified carbon electrode materials have poor sulfate selectivity and adsorption capacity. In this work, to improve sulfate selectivity, we prepared activated carbon materials loaded with different amino contents by grafting amino groups via acid treatment for different times. In the competitive ion adsorption experiments, the sulfate selectivity of AC was only 0.64 and the amino-modified AC increased by 1.98-2.52 times due to the formation of stronger hydrogen bonds between the amino group and sulfate. AC-NH2-4 had the best selectivity and the sulfate selective coefficient was 2.25. The desorption of sulfate was 92.46% within one hour. In addition, the surface of the amino-modified activated carbon showed significantly improved electrochemical properties and better capacitance. The specific capacitance of amino-modified AC in different electrolyte solutions was consistent with the competitive adsorption results. The specific capacitance of amino-modified AC in Na2SO4 electrolyte solution was the highest. The modified electrode material also had the advantages of a higher adsorption capacity and excellent regeneration performance after continuous electric adsorption-desorption cycles. Therefore, it may have development potential to selectively adsorb sulfate in practical applications.


Assuntos
Carvão Vegetal , Purificação da Água , Carvão Vegetal/química , Adsorção , Sulfatos , Purificação da Água/métodos , Eletricidade , Eletrodos
10.
Water Res ; 222: 118927, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933818

RESUMO

Capacitive deionization (CDI) has been widely studied as a highly efficient method for the removal of charged pollutants in sewage. However, the control of ion selectivity has always been challenging, limiting the application of this approach. In this article, the regulation of different acid/base functional group distributions on the selectivity of four anions are comprehensively discussed. The effects are quantified through simulations and statistical analysis. Finally, optimized CDI is used for the simultaneous denitrification and dephosphorization of municipal wastewater. The results show that carboxyl groups significantly promote the selectivity of dihydrogen phosphate and that amino groups promote the selectivity of sulfate and dihydrogen phosphate. Density functional theory is used to calculate the influence of the functional groups on the anion adsorption energy. Compared with other anions, the energy released is improved when carboxyl groups are included in the adsorption of dihydrogen phosphate. The increase in the released energy is highest when amino groups participate in the adsorption of sulfate and is second-highest when they participate in the adsorption of dihydrogen phosphate. Statistical analysis shows that the valence and hydration energy of the anion and the effect of the functional groups on anion adsorption are significantly related to anion adsorption (P < 0.05), and the correlation coefficient of the model is 0.7253. A CDI stack for the removal of phosphorus and nitrogen under high background ion concentrations is constructed and applied, and it is shown that the treated wastewater meets higher discharge standards. Moreover, the method reaches nearly 80% water production under optimized operating modes. This study reveals the importance of functional groups in ion-selective regulation and provides a potential method for high-standard wastewater treatment.


Assuntos
Águas Residuárias , Purificação da Água , Adsorção , Ânions , Eletrodos , Fosfatos , Sulfatos , Purificação da Água/métodos
11.
Water Sci Technol ; 86(3): 568-583, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960837

RESUMO

Biochar has been reported as an excellent adsorbent for antibiotics, but the application faces the challenges of complicated separation. Here, MgFe2O4-magnetic biochars (MBCs) derived from corncob were synthesized at 300 °C to remove sulfamethoxazole (SMX) and tetracycline (TC) simultaneously. The characteristics of MBC300 had a high magnetic intensity. MBC300 had the maximum adsorption capacity of SMX with 50.75 mg/g and the high adsorption amount of TC with 120.36 mg/g respectively, which were 4.49 and 6.48 times those of BC300. MBC300 had the advantage of energy conservation compared with MBC450 and MBC600. The better fitting kinetics and isotherms indicated that the SMX and TC sorption onto MBC300 were governed by chemisorption. FTIR and XPS analyses confirmed that the SMX sorption onto MBC300 was dominated by polar interactions and π-π electron donor-acceptor interactions (π-π EDA). Furthermore, the TC sorption was involved in pore filling, π-π EDA, H-bonds, and surface complexation. MBC300 presented effective adsorption of SMX and TC over a wide range of pH. The competition between antibiotics and coexisting pollutants of dissolved organic matter (DOM), Ca2+, CO32-, and PO43- significantly inhibited the sorption. The results indicate that MBC300 is an effective and promising adsorbent to treat SMX and TC simultaneously.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Adsorção , Antibacterianos/química , Carvão Vegetal/química , Cinética , Fenômenos Magnéticos , Sulfametoxazol/química , Tetraciclina , Água , Poluentes Químicos da Água/análise
12.
Environ Sci Pollut Res Int ; 29(40): 60832-60842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35437654

RESUMO

Polygonatum cyrtonema Hua (PC) and Bletilla striata (BS) are widely used and planted as tuber traditional Chinese medicinal materials (TCMMs). Cadmium (Cd) is one of the major causes of soil pollution and challenge to the quality and safety of TCMMs. Understanding the absorption and distribution of Cd is important for addressing the risks posed by its residues. As a result, the higher Cd translocation factor (TF) results in the lower Cd bioconcentration factor (BCF) in the PC tuber than that of BS attributed to a lower Cd concentration in the PC tuber, which guaranteed its safe utilization and edible safety under 1 mg·kg-1 Cd soil. Cd stress overall activated peroxidase (POD), catalase (CAT), and water-extractable polysaccharides in PC (PCP1) to exhibit better antioxidation, while the superoxide dismutase (SOD) in BS increased by approximately 206-277% to alleviate more severe oxidative damage. Particularly, Cd induced an increase in PCP1 higher than that of water-extractable polysaccharides of BS (BSP1) by approximately 335% to 1351%. PC exhibited effective strategies for alleviating Cd toxicity, including transferring Cd to nonmedicinal parts, increasing polysaccharides, and synergistically activating the enzymatic antioxidant system. This study expands the application for the safe utilization of low-Cd contaminated soil and provides novel insights for tuber TCMMs to alleviate Cd toxicity.


Assuntos
Antioxidantes , Poluentes do Solo , Antioxidantes/farmacologia , Cádmio/análise , Catalase , China , Folhas de Planta/química , Polissacarídeos/farmacologia , Solo/química , Poluentes do Solo/análise , Superóxido Dismutase , Água
13.
Chemosphere ; 291(Pt 3): 133108, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34856233

RESUMO

As a beneficial element, Selenium (Se) reduces toxic cadmium (Cd) absorption in many crops, but the effects of Se on Cd hyperaccumulator plants are unclear. This study examined the effects of Se on Amaranthus hypochondriacus (K472). The results showed that Se increased antioxidant enzyme activities, reduced Cd concentrations and toxicity, restored cell viability, and enhanced photosynthesis; these effects increased the biomass of roots, stems, and leaves by 59.87%, 53.85%, 44.19%, respectively, and these values exceeded the biomass of roots and stems in untreated control plants by 56.69% and 15.37%, respectively. Moreover, Se promoted PC synthesis, stably chelated Cd in the form of PC3 and PC4 and transported PC-Cd to vacuoles. Furthermore, Se protected organelles and reduced Cd migration by increasing Cd levels in cell walls and vacuoles. Interestingly, although the Cd content in K472 was decreased, Se maintained the total extracted Cd concentrations and its remediation efficiency by improving biomass and increased tolerance to Cd by approximately 5 times. The experimental results provide novel insights and methods for mitigating toxicity, promoting growth, and broadening the engineering application scope of K472; these results also provide a theoretical basis for further application of Se in soil with high Cd concentrations.


Assuntos
Amaranthus , Selênio , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Selênio/farmacologia , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Compostos de Sulfidrila
14.
J Hazard Mater ; 423(Pt B): 127103, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34534809

RESUMO

N-doped hierarchical porous carbons (NHPCs) were successfully prepared from soft-templated zeolitic imidazolate framework-8 (ZIF-8) precursors using sodium dodecylbenzene sulfonate (SDBS) as a template through facile one-step carbonization and applied in tetracycline hydrochloride (TCH) adsorption. The NHPC synthesized at 1000 °C with an SDBS/Zn2+ molar ratio of 0.075 exhibited the highest TCH adsorption (qm = 80.92 mg g-1) owing to its relatively large BET surface area (1067.41 m2 g-1) and pore volume (1.22 cm3 g-1) and the stronger surface interaction between TCH and NHPCs (HC1000-0.075). Compared with surfactant-free ZIF-8-derived carbon (HC), introduction of SDBS in the ZIF-8 precursor not only improved the pore structure of the carbon materials but also increased the nitrogen content and the number of surface functional groups. Adsorption kinetics and isotherms showed that the pseudo-second-order model and Sips model fit the TCH adsorption behavior on HC and HC1000-0.075 well. Adsorption experiments and characterizations revealed that the adsorption mechanism involved in TCH adsorption on HC1000-0.075 mainly depended on the synergistic effect of pore filling, H-bonding, π-π interactions, and weak electrostatic interactions. This study provides an effective and simple strategy for fabricating MOF-derived NHPCs as a promising adsorbent for the removal of antibiotics from water.


Assuntos
Poluentes Químicos da Água , Zeolitas , Adsorção , Carbono , Porosidade , Tetraciclina , Água , Poluentes Químicos da Água/análise
15.
Int J Phytoremediation ; 24(10): 1060-1070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34779332

RESUMO

Rutin is a flavonoid with strong antioxidative effects on plant metabolism that facilitates resistance to environmental stress. The effect of foliar rutin on cadmium (Cd) uptake in Amaranthus hypochondriacus (K472) was studied. The results showed that a foliar spray of rutin alleviated Cd toxicity, promoted plant growth, improved Cd transfer to and storage in aerial plant parts and Cd accumulation with positive effects over time. A rutin concentration of 1.5 mg/mL showed the strongest promotion effect: the biomass and Cd content were increased at 13 days by 68.62% and 405.54% compared to 3 days, respectively, whereas a high concentration of rutin (5 mg/mL) inhibited plant growth and hindered Cd absorption. Two stages of Cd detoxification were identified in K472 after appropriate rutin application. First, an antioxidant system including an enzymatic antioxidant (superoxide dismutase [SOD]) and nonenzymatic antioxidants (glutathione [GSH] and flavonoids) was activated to enhance plant stress resistance. Quercetin and phytochelatin (PC) synthesis were then enhanced to perform detoxification synergistically with the antioxidant system to improve stress tolerance and achieve stable Cd detoxification. The results demonstrated that appropriately prolonging the application time of exogenous rutin to K472 is an effective way to improve the Cd remediation efficiency.


The application of exogenous rutin to regulate the growth and Cd absorption of grain amaranth is reported for the first time. A foliar spray of rutin enriches Cd by regulating the metabolism of flavonoids and enhancing antioxidation and phytochelatin detoxification under Cd stress. Properly prolonging the harvest time after rutin treatment can greatly improve the Cd remediation efficiency of soil. The findings of the present study would be helpful for the remediation of Cd-contaminated soils.


Assuntos
Amaranthus , Poluentes do Solo , Amaranthus/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Fitoquelatinas/metabolismo , Rutina/metabolismo , Rutina/farmacologia , Poluentes do Solo/metabolismo
16.
J Hazard Mater ; 425: 127875, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34902722

RESUMO

The gap between the current serious soil heavy metal (HM) contamination and the low efficiency of soil remediation threatens human health. The aim of this study was to propose a method to improve the efficiency of phytoremediation by exogenous rutin application and explain the potential mechanism. A series of rutin treatments were designed to evaluate the biomass, cadmium (Cd) accumulation and physiological and biochemical responses of Amaranthus hypochondriacus under different Cd stresses. The results showed a decline in cell membrane damage with rutin application, and more Cd ions were immobilized in the cell wall than in the vacuole, resulting in an increase in Cd tolerance in plants. The addition of rutin caused significant effects on the synthesis of glutathione (GSH), including the advancement of the conversion of GSH to phytochelatins (PCs). Among them, PC2 and PC3 in the leaves contributed the most to the high accumulation of Cd. Overall, the phytoremediation efficiency and phytoextraction amount of Amaranthus hypochondriacus with rutin application were improved maximumly by 219.48% and 260.00%, respectively. This study provides a constructive approach for improving the efficiency of phytoremediation by foliar application of flavonoids and contributes to the further development of soil remediation in Cd-contaminated fields.


Assuntos
Amaranthus , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Membrana Celular/química , Parede Celular/química , Flavonoides , Humanos , Permeabilidade , Rutina , Solo , Poluentes do Solo/análise
17.
Water Sci Technol ; 84(7): 1757-1773, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34662311

RESUMO

Capacitive deionization (CDI) has been considered as a promising technology for removing phosphate from water but suffer inferior selectivity and electrosorption performances for phosphate of current carbon electrodes in CDI. Herein, we achieved highly selective phosphate removal from a ternary effluent of Cl-, PO43-, and SO42- by using nitric acid-treated activated carbon (AC) with various modification times and pure AC as the anode and cathode, a novel phosphate selective asymmetric CDI reactor. The results showed that carboxyl groups greatly grafted on the materials after modification (varying from 0.00084 to 0.0012 mol g-1). The phosphate selectivity of the present research was higher than that of unmodified CDI, and it increased with the increase of carboxyl groups content. The highest phosphate selectivity (2.01) in modified materials is almost six times higher than that of pure AC. Moreover, the modified electrodes exhibited good regenerative ability with a phosphate desorption efficiency of around 72.12% during the adsorption/desorption process and great stability during the cycling experiment. These results demonstrated that the innovative application of nitric acid-modified AC can effectively selectively remove phosphate from mixed anion solution, opening a hopeful window to selective adsorption in water treatment by CDI.


Assuntos
Carvão Vegetal , Purificação da Água , Adsorção , Eletrodos , Fosfatos
18.
Sci Rep ; 11(1): 18737, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548529

RESUMO

Chinese herbal medicine is widely cultivated in Southwest China, where the soil cadmium (Cd) contamination of farmland is more serious than that in China as a whole. In this study, Polygonatum sibiricum was exposed to Cd at concentrations of e-1, e0, e2, and e4 mg/kg for 30, 60, and 90 days, and the physiological stress responses, Cd and mineral element uptake, antioxidant enzyme activities, and content changes of pharmaceutical ingredients (polysaccharides) were analyzed to decipher the feasibility of safe utilization in Cd-contaminated soil. The results show that the activity of antioxidant enzymes (SOD and CAT) in the aboveground part was always higher than that in the underground part. The underground part of Polygonatum sibiricum mobilizes nonenzymatic systems to facilitate the synthesis of polysaccharides (PCP1, PCP2) with antioxidant properties to cope with Cd stress. Mineral elements (P, K, Ca, Mg, Fe, Cu, and Zn) significantly (p < 0.05) changed after 90 d of cultivation. In particular, the changes in the iron and zinc content were significantly correlated (p < 0.05) with the activities of SOD and POD. Soil Cd at e0 mg/kg can guarantee the safe production and utilization of Polygonatum sibiricum, and the stimulation of Cd promotes polysaccharide synthesis and biomass growth.

19.
Environ Res ; 198: 111254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965392

RESUMO

Most reported metal organic frameworks (MOFs) have microporous structures and defective active sites, limiting their practical application to macromolecular substances. A hierarchical porous zeolitic imidazolate framework-8 (ZIF-8) was prepared using poly(diallyldimethylammonium chloride) (PDDA) as a structure-directing agent under facile "aqueous room-temperature" conditions to increase the mass transfer and adsorption capacity tetracycline hydrochloride (TCH). The ZIF-8 pore structure and morphology were synchronously tuned by controlling the PDDA molecular weight and dosage. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Bruner-Emmett-Teller (BET), scanning electron microscopy (SEM), NH3-temperature-programmed desorption (NH3-TPD) and adsorption results revealed abundant pore structures and open metal sites in the prepared materials, along with excellent TCH adsorption performance compared with ZIF-8, despite decreased BET surface areas. Initial screens revealed large adsorption capacities of hierarchical porous ZIF-8P3(4) (976.8 mg g-1) due to the presence of more abundant unsaturated metal sites than ZIF-8 and novel hierarchical porous structures. Therefore, TCH adsorption on ZIF-8 and ZIF-8P3(4), including the kinetics, isotherms, thermodynamics and pH effect, was studied. The adsorption process follows pseudo-second-order kinetics and the Freundlich models better, indicating multilayer adsorption of TCH on the surface of the two absorbents. Adsorption behavior test, FTIR, XPS, BET and XRD results show that TCH adsorption on ZIF-8 and ZIF-8P3(4) most likely involves coordination bonds, electrostatic and π-π interactions, hydrogen bonds, and pore-filling effects. This study provides new insights into the template preparation of MOFs with high adsorption performance as potentially economical adsorbents to remove organic matter from contaminated water.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Zeolitas , Adsorção , Porosidade , Tetraciclina , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 286: 117205, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975219

RESUMO

Considering the biomagnification in food chains, cadmium (Cd) contamination in paddy fields has become concerning. The remediation of soil cadmium by the addition of amendments is a common agricultural practice. However, it remains ambiguous whether amendment use decreases soil environmental quality (SEQ) and sustainability. In this study, five compound amendments with different pH were utilized in long-term Cd-contaminated paddy soils. The SEQ of all treatments was quantitatively assessed according to a comprehensive evaluation mathematical model (Criteria Importance Through Inter-criteria Correlation (CRITIC)-Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)), and the indicators involved in microbial functional gene (MFG) abundance, soil physicochemical and microbiological properties (CMP) and soil microbial function (N-related enzyme and transformation rate, N-ET) were measured. The results show that the SQE and remediation effect (expressed by the decrease in available Cd (ACd), %) in our treatments were alkaline > natural > acidic except for D alkaline treatment. The significant contradiction between soil SQE and remediation effect in D treatment attribute to its dose effects, which inhibiting microbial nitrogen assimilation and dissimilation and therefore counteracts the promoting effect of the decrease in ACd. Based on this discussion, three alkaline amendments (A, B and D) with similar effective remediation effect were employed in four other Cd-contaminated soils. Results indicated that both negative effect (D treatment) and promoting effect (A and B treatment) existed in the next 3 years.


Assuntos
Recuperação e Remediação Ambiental , Oryza , Poluentes do Solo , Cádmio/análise , Poluição Ambiental , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...