Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(42): e202307924, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37656425

RESUMO

Rational design of electrocatalysts is essential to achieve desirable performance of electrochemical synthesis process. Heterostructured catalysts have thus attracted widespread attention due to their multifunctional intrinsic properties, and diverse catalytic applications with corresponding outstanding activities. Here, we report an in situ restoration strategy for the synthesis of ultrathin Pd-Ni(OH)2 nanosheets. Such Pd-Ni(OH)2 nanosheets exhibit excellent activity and selectivity towards reversible electrochemical reforming of ethylamine and acetonitrile. In the acetonitrile reduction process, Pd acts as reaction center, while Ni(OH)2 provide proton hydrogen through promoting the dissociation of water. Also ethylamine oxidation process can be achieved on the surface of the heterostructured nanosheets with abundant Ni(II) defects. More importantly, an electrolytic cell driven by solar cells was successfully constructed to realize ethylamine-acetonitrile reversible reforming. This work demonstrates the importance of heterostructure engineering in the rational synthesis of multifunctional catalysts towards electrochemical synthesis of fine chemicals.

2.
Angew Chem Int Ed Engl ; 62(30): e202305158, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235520

RESUMO

Using a one-pot hydrothermal method with ethylenediamine, we have synthesized mesoporous PtPb nanosheets that exhibit exceptional activity in both hydrogen evolution and ethanol oxidation. The resulting PtPb nanosheets have a Pt-enriched structure with up to 80 % atomic content of Pt. The synthetic method generated a significant mesoporous structure, formed through the dissolution of Pb species. These advanced structures enable the mesoporous PtPb nanosheets to achieve a current density of 10 mA cm-2 with an extreme low overpotential of 21 mV for hydrogen evolution under alkaline conditions. Furthermore, the mesoporous PtPb nanosheets exhibit superior catalytic activity and stability for ethanol oxidation. The highest catalytic current density of PtPb nanosheets is 5.66 times higher than that of commercial Pt/C. This research opens up new possibilities in designing mesoporous, two-dimensional noble-metal-based materials for electrochemical energy conversion with excellent performance.

3.
ACS Appl Mater Interfaces ; 14(39): 45042-45050, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149741

RESUMO

The electrochemical reforming of ethanol into hydrogen and hydrocarbons can reduce the electric potential energy barrier of hydrogen production from electrochemical water splitting, obtaining high value-added anode products. In this work, Ru/Ni(OH)2 heterostructured nanomaterials were synthesized successfully by an in situ reduction strategy with remarkable multifunctional catalytic properties. In the hydrogen evolution reaction, Ru/Ni(OH)2 exhibits a smaller overpotential of 31 mV to obtain a current density of 10 mA/cm2, which is better than that of commercial Pt/C. Notably, such heterostructured Ru/Ni(OH)2 nanomaterials also perform an outstanding catalytic selectivity toward an acetaldehyde product in the oxidation of ethanol. DFT calculations reveal that abundant Ru(0)-Ni(II) heterostructured sites are the key factor for the excellent performances. As a result, an ethanol-selective reforming electrolyzer driven by a 2 V solar cell is constructed to produce hydrogen and acetaldehyde in the cathodic and anodic part, respectively, via using Ru/Ni(OH)2 heterostructured catalysts. This work provides a forward-looking technical guidance for the design of novel energy conversion systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...