Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 231, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744857

RESUMO

Phosphorylated H2AX, known as γH2AX, forms in response to genotoxic insults in somatic cells. Despite the high abundance of H2AX in zygotes, the level of irradiation-induced γH2AX is low at this stage. Another H2A variant, TH2A, is present at a high level in zygotes and can also be phosphorylated at its carboxyl end. We constructed H2AX- or TH2A-deleted mice using CRISPR Cas9 and investigated the role of these H2A variants in the DNA damage response (DDR) of zygotes exposed to γ-ray irradiation at the G2 phase. Our results showed that compared to irradiated wild-type zygotes, irradiation significantly reduced the developmental rates to the blastocyst stage in H2AX-deleted zygotes but not in TH2A-deleted ones. Furthermore, live cell imaging revealed that the G2 checkpoint was activated in H2AX-deleted zygotes, but the duration of arrest was significantly shorter than in wild-type and TH2A-deleted zygotes. The number of micronuclei was significantly higher in H2AX-deleted embryos after the first cleavage, possibly due to the shortened cell cycle arrest of damaged embryos and, consequently, the insufficient time for DNA repair. Notably, FRAP analysis suggested the involvement of H2AX in chromatin relaxation. Moreover, phosphorylated CHK2 foci were found in irradiated wild-type zygotes but not in H2AX-deleted ones, suggesting a critical role of these foci in maintaining cell cycle arrest for DNA repair. In conclusion, H2AX, but not TH2A, is involved in the DDR of zygotes, likely by creating a relaxed chromatin structure with enhanced accessibility for DNA repair proteins and by facilitating the formation of pCHK2 foci to prevent premature cleavage.

2.
J Reprod Dev ; 70(3): 197-201, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644217

RESUMO

In somatic cells, DNA repair is attenuated during mitosis to prevent the formation of anaphase bridges and facilitate the proper segregation of sister chromatids. Irradiation-induced γH2AX foci persist for hours in M phase somatic cells. However, we observed that anaphase bridges formed in a significant fraction of mouse zygotes irradiated during mitosis. Additionally, γH2AX signals in M phase zygotes peaked 30 min after irradiation and subsequently reduced with a half-life within 1-2 h. These results suggest that the DNA repair system may operate efficiently in M phase zygotes following irradiation, leading to the frequent formation of anaphase bridges. The absence of H2AX promoted the successful segregation of sister chromatids and enhanced the development of embryos to the blastocyst stage. The DNA repair system may be differentially regulated during the M phase of the first cell cycle to ensure the immediate elimination of damaged zygotes, thereby efficiently preventing transmission of mutations to subsequent generations.


Assuntos
Reparo do DNA , Histonas , Zigoto , Animais , Zigoto/efeitos da radiação , Zigoto/metabolismo , Camundongos , Histonas/metabolismo , Feminino , Mitose/efeitos da radiação , Desenvolvimento Embrionário/efeitos da radiação , Anáfase/efeitos da radiação , Cromátides/metabolismo , Cromátides/efeitos da radiação , Blastocisto/efeitos da radiação , Blastocisto/metabolismo
3.
Nucleic Acids Res ; 52(11): 6158-6170, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38567720

RESUMO

In mice, transcription from the zygotic genome is initiated at the mid-one-cell stage, and occurs promiscuously in many areas of the genome, including intergenic regions. Regulated transcription from selected genes is established during the two-cell stage. This dramatic change in the gene expression pattern marks the initiation of the gene expression program and is essential for early development. We investigated the involvement of the histone variants H3.1/3.2 in the regulation of changes in gene expression pattern during the two-cell stage. Immunocytochemistry analysis showed low nuclear deposition of H3.1/3.2 in the one-cell stage, followed by a rapid increase in the late two-cell stage. Where chromatin structure is normally closed between the one- and two-cell stages, it remained open until the late two-cell stage when H3.1/3.2 were knocked down by small interfering RNA. Hi-C analysis showed that the formation of the topologically associating domain was disrupted in H3.1/3.2 knockdown (KD) embryos. Promiscuous transcription was also maintained in the late two-cell stage in H3.1/3.2 KD embryos. These results demonstrate that H3.1/3.2 are involved in the initial process of the gene expression program after fertilization, through the formation of a closed chromatin structure to execute regulated gene expression during the two-cell stage.


Assuntos
Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Histonas , Animais , Camundongos , Histonas/metabolismo , Cromatina/metabolismo , Transcrição Gênica , Zigoto/metabolismo , Técnicas de Silenciamento de Genes , Feminino
4.
J Reprod Dev ; 69(3): 178-182, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062716

RESUMO

Linker histone variants regulate higher-order chromatin structure and various cellular processes. It has been suggested that linker histone variant H1a loosens chromatin structure and activates transcription. However, its role in early mouse development remains to be elucidated. We investigated the functions of H1a during preimplantation development using H1a gene-deleted mice. Although H1a homozygous knockout (KO) mice were born without any abnormalities, the number of offspring were reduced when the mothers but not fathers were homozygous KO animals. Maternal H1a KO compromised development during the morula and blastocyst stages, but not differentiation of the inner cell mass or trophectoderm. Thus, maternal linker histone H1a is important in early development.


Assuntos
Blastocisto , Histonas , Camundongos , Animais , Histonas/genética , Desenvolvimento Embrionário/genética , Mórula , Cromatina
5.
DNA Repair (Amst) ; 117: 103370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863142

RESUMO

Mammalian zygotes are hypersensitive to radiation exposure compared with later-stage embryos and somatic cells, which may be due to an unusual DNA damage response (DDR). DNA damage checkpoints are an essential part of the DDR, allowing for faithful replication of cells. Although the DDR and radiosensitivity of somatic cells are dependent on the cell cycle phase, it remains largely unclear how the irradiation of zygotes at different phases affects cell cycle progression and preimplantation development. Here, mouse zygotes were irradiated with 10 Gy γ-rays at all four cell cycle phases. DNA damage checkpoints were activated by γ-irradiation at the G2 phase, but not at the G1, S, and M phases. The absence of DNA damage checkpoints at the G1 and M phases seems to be due to the low abundance of phosphorylated CHK2, which plays a key role in checkpoint activation in response to ionizing radiation. The cause of the inoperative S phase checkpoint may lie downstream of CHK2 activation. The inactive DNA damage checkpoints at the G1 and S phases contributed to micronucleus formation in the subsequent 2-cell stage, whereas irradiation at the M phase led to the highest incidence of chromatin bridges. The low developmental rates of embryos irradiated at the G1, S, and M phases suggest that embryos with these two types of chromatin abnormalities are prone to developmental failure. Taken together, these results suggest that the radiosensitivity of zygotes can be ascribed to a defective DDR at the G1, S, and M phases.


Assuntos
Dano ao DNA , Zigoto , Animais , Ciclo Celular , Divisão Celular , Cromatina , Mamíferos , Camundongos , Tolerância a Radiação
6.
Reproduction ; 164(2): 19-29, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666814

RESUMO

In brief: In oocytes, chromatin structure is loosened during their growth, which seems to be essential for the establishment of competence to accomplish the maturation and further development after fertilization. This paper shows that a linker histone variant, H1foo, is involved in the formation of loosened chromatin structure in growing oocytes. Abstract: During oogenesis, oocytes show a unique mode of division and gene expression patterns. Chromatin structure is thought to be involved in the regulation of these processes. In this study, we investigated the functions of linker histones, which modulate higher-order chromatin structure during oogenesis. Because H1foo is highly expressed in oocytes, we knocked down H1foo using siRNA and observed oocyte growth, maturation, and fertilization. However, H1foo knockdown had no effect on any of these processes. Overexpression of H1b or H1d, which has a high ability to condense chromatin and is expressed at a low level in oocytes, resulting in tightened chromatin and a decreased success rate of oocyte maturation. By contrast, overexpression of H1a, which is expressed at a high level in oocytes and has a low ability to compact chromatin, did not affect growth or maturation. Therefore, H1a, but not other variants, might compensate for the function of H1foo in H1foo-knockdown oocytes. These results implicate H1foo in the formation of loose chromatin structure, which is necessary for oocyte maturation. In addition, the low expression of somatic linker histone variants, for example, H1b and H1d, is important for loosened chromatin and meiotic progression.


Assuntos
Histonas , Oogênese , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Oogênese/genética
7.
J Reprod Dev ; 68(2): 79-84, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35034936

RESUMO

The zygotic genome is transcriptionally silent immediately after fertilization. In mice, initial activation of the zygotic genome occurs in the middle of the one-cell stage. At the mid-to-late two-cell stage, a burst of gene activation occurs after the second round of DNA replication, and the profile of transcribed genes changes dramatically. These two phases of gene activation are called minor and major zygotic gene activation (ZGA), respectively. As they mark the beginning of the gene expression program, it is important to elucidate gene expression regulation during these stages. This article reviews the outcomes of studies that have clarified the profiles and regulatory mechanisms of ZGA.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Zigoto , Animais , Replicação do DNA , Desenvolvimento Embrionário/genética , Genoma , Camundongos , Ativação Transcricional , Zigoto/metabolismo
8.
Insects ; 12(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680618

RESUMO

The doublesex (dsx) gene, which encodes a transcription factor, regulates sexual differentiation in insects. Sex-specific splicing of dsx occurs to yield male- and female-specific isoforms, which promote male and female development, respectively. Thus, functional disruption of dsx leads to an intersexual phenotype in both sexes. We previously identified a dsx ortholog in the sawfly, Athalia rosae. Similar to dsx in other insects, dsx in the sawfly yields different isoforms in males and females as a result of alternative splicing. The sawfly exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. Knockdown of Ardsx via parental RNA interference (RNAi), which enables knockdown of genes in offspring embryos, led to a lack of internal and external genitalia in haploid male progeny. Additional injection of dsRNA targeting Ardsx in these animals caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. Notably, the same knockdown approach using diploid males obtained by sib-crossing caused complete male-to-female sex reversal; they were morphologically and behaviorally females. The same RNAi treatment did not affect female differentiation. These results indicate that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead.

9.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168076

RESUMO

The pericentromeric heterochromatin of one-cell embryos forms a unique, ring-like structure around the nucleolar precursor body, which is absent in somatic cells. Here, we found that the histone H3 variants H3.1 and/or H3.2 (H3.1/H3.2) were localized asymmetrically between the male and female perinucleolar regions of the one-cell embryos; moreover, asymmetrical histone localization influenced DNA replication timing. The nuclear deposition of H3.1/3.2 in one-cell embryos was low relative to other preimplantation stages because of reduced H3.1/3.2 mRNA expression and incorporation efficiency. The forced incorporation of H3.1/3.2 into the pronuclei of one-cell embryos triggered a delay in DNA replication, leading to developmental failure. Methylation of lysine residue 27 (H3K27me3) of the deposited H3.1/3.2 in the paternal perinucleolar region caused this delay in DNA replication. These results suggest that reduced H3.1/3.2 in the paternal perinucleolar region is essential for controlled DNA replication and preimplantation development. The nuclear deposition of H3.1/3.2 is presumably maintained at a low level to avoid the detrimental effect of K27me3 methylation on DNA replication in the paternal perinucleolar region.


Assuntos
Histonas/genética , Histonas/metabolismo , Zigoto/crescimento & desenvolvimento , Animais , Replicação do DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Lisina/química , Masculino , Metilação , Camundongos , Zigoto/metabolismo
10.
Insect Biochem Mol Biol ; 129: 103517, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422636

RESUMO

DMRT (Doublesex and Mab-3-related transcription factor) is a highly conserved transcription factor family involved in sex determination in numerous animal species. One DMRT, dmrt2/dmrt11E, has entirely different functions in invertebrate and vertebrate species, indicating unpredicted functions. Here, we performed functional analysis of the dmrt11E gene in the domesticated silkworm, Bombyx mori. This gene was preferentially expressed in ovarioles at the last larval instar stage. Its mRNA accumulated in ovarian eggs during the adult stage. CRISPR/Cas9-mediated knockout of Bombyx dmrt11E (Bmdmrt11E) caused defects in oogenesis, resulting in the production of abnormal eggs with transparent liquids. These eggs had significantly reduced fertility and lipid levels. Transcriptomic comparisons between ovaries of control and mutant insects at two developmental stages identified six genes that may be under the control of Bmdmrt11E. Finally, we provide a possible model for lipid uptake and storage in eggs of Bombyx mori.


Assuntos
Bombyx/fisiologia , Proteínas de Insetos/fisiologia , Oogênese , Animais , Feminino , Fertilidade , Metabolismo dos Lipídeos , Ovário/metabolismo , Óvulo/metabolismo , Fatores de Transcrição/fisiologia , Transcriptoma
11.
Sci Rep ; 10(1): 19396, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173118

RESUMO

After fertilization, the zygotic genome is activated through two phases, minor zygotic activation (ZGA) and major ZGA. Recently, it was suggested that DUX is expressed during minor ZGA and activates some genes during major ZGA. However, it has not been proven that Dux is expressed during minor ZGA and functions to activate major ZGA genes, because there are several Dux paralogs that may be expressed in zygotes instead of Dux. In this study, we found that more than a dozen Dux paralogs, as well as Dux, are expressed during minor ZGA. Overexpression of some of these genes induced increased expression of major ZGA genes. These results suggest that multiple Dux paralogs are expressed to ensure a sufficient amount of functional Dux and its paralogs which are generated during a short period of minor ZGA with a low transcriptional activity. The mechanism by which multiple Dux paralogs are expressed is discussed.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Zigoto/metabolismo , Animais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zigoto/citologia
12.
BMC Dev Biol ; 20(1): 19, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957956

RESUMO

BACKGROUND: Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM. RESULTS: In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA. CONCLUSIONS: Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.


Assuntos
Bombyx/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Diferenciação Sexual/genética , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Bombyx/genética , Feminino , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Proteínas de Insetos/genética , Masculino , Isoformas de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Especificidade da Espécie
13.
Sex Dev ; 13(3): 151-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487710

RESUMO

Steroid hormones, represented by estrogen and testosterone, act as sex hormones that play an essential role in the sexual differentiation of vertebrates. However, it remains unclear whether ecdysteroids, typical steroid hormones in insects, function as sex hormones. In this study, we investigated whether ecdysteroids or ecdysone signals are involved in the sexual differentiation of the silkworm (Bombyx mori) embryo. Quantitative analysis using LC-MS/MS demonstrated that there was no significant difference in the 20-hydroxyecdysone (20E) titer between sexes during embryonic development. Consistent with this result, expression levels of 2 genes encoding ecdysteroid-phosphate phosphatase (EPPase) and ecdysone 20-hydroxylase (E20OHase), which are essential for the biosynthesis of ecdysone and 20E in eggs, did not show a significant difference between male and female embryos. Expression levels of ecdysone receptor (EcR) and E75, which is one of a small set of genes induced directly by 20E, were also similar between the 2 sexes. However, knockdown of EPPase and one isoform of EcR (EcR-A) resulted in decreased expression of Bombyx doublesex (Bmdsx), a master regulatory gene for sexual differentiation of the silkworm in both male and female embryos. In vitro analysis with cultured testes revealed that expression levels of Bmdsx were increased in a dose-dependent manner of the ecdysone analog, ponasterone A. These results suggest that ecdysone signaling may play a role in indirectly regulating the expression of some genes involved in sexual differentiation through inducing expression of Bmdsx in the silkworm.


Assuntos
Bombyx/embriologia , Bombyx/genética , Ecdisona/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Insetos/genética , Transdução de Sinais , Animais , Ecdisterona/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Masculino , Óvulo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Biol Reprod ; 100(1): 13-14, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247608
15.
J Vis Exp ; (136)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29985353

RESUMO

Live imaging is a powerful tool that allows for the analysis of molecular events during ontogenesis. Recently, chromatin looseness or openness has been shown to be involved in the cellular differentiation potential of pluripotent embryonic stem cells. It was previously reported that compared with embryonic stem cells, zygotes harbor an extremely loosened chromatin structure, suggesting its association with their totipotency. However, until now, it has not been addressed whether this extremely loosened/open chromatin structure is important for embryonic developmental potential. In the present study, to examine this hypothesis, an experimental system in which zygotes that were analyzed by fluorescence recovery after photo-bleaching can develop to term without any significant damage was developed. Importantly, this experimental system needs only a thermos-plate heater in addition to a confocal laser scanning microscope. The findings of this study suggest that fluorescence recovery after photo-bleaching analysis (FRAP) analysis can be used to investigate whether the molecular events in zygotic chromatin are important for full-term development.


Assuntos
Cromatina/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Zigoto/metabolismo , Animais , Masculino , Camundongos
16.
Proc Natl Acad Sci U S A ; 115(29): E6780-E6788, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967139

RESUMO

In mice, transcription initiates at the mid-one-cell stage and transcriptional activity dramatically increases during the two-cell stage, a process called zygotic gene activation (ZGA). Associated with ZGA is a marked change in the pattern of gene expression that occurs after the second round of DNA replication. To distinguish ZGA before and after the second-round DNA replication, the former and latter are called minor and major ZGA, respectively. Although major ZGA are required for development beyond the two-cell stage, the function of minor ZGA is not well understood. Transiently inhibiting minor ZGA with 5, 6-dichloro-1-ß-d-ribofuranosyl-benzimidazole (DRB) resulted in the majority of embryos arresting at the two-cell stage and retention of the H3K4me3 mark that normally decreases. After release from DRB, at which time major ZGA normally occurred, transcription initiated with characteristics of minor ZGA but not major ZGA, although degradation of maternal mRNA normally occurred. Thus, ZGA occurs sequentially starting with minor ZGA that is critical for the maternal-to-zygotic transition.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Zigoto/metabolismo , Animais , Blastocisto/citologia , Diclororribofuranosilbenzimidazol/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Zigoto/citologia
17.
FEBS Lett ; 592(14): 2414-2424, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29963710

RESUMO

The chromatin structure in one-cell-stage mouse embryos is extremely loose and becomes tighter at the two-cell stage. As linker histones are involved in higher-order chromatin structure, we examined the involvement of the linker histone variant H1foo in the change of chromatin looseness between the one- and two-cell stages. H1foo knockdown causes the chromatin structure to be tighter in the pronucleus and increases deposition of the histone H3 variant H3.1/3.2 in the peripheral region of the pronucleus in one-cell-stage embryos. The decrease in chromatin looseness at the two-cell stage is less after overexpressing H1foo. These results suggest that H1foo is involved in the change in chromatin structure via nuclear deposition of H3 variants between the one- and two-cell stages.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/química , Histonas/fisiologia , Zigoto/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/metabolismo , Fase de Clivagem do Zigoto/fisiologia , Técnicas de Cultura Embrionária , Feminino , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Conformação de Ácido Nucleico , Oócitos/metabolismo , Gravidez
18.
Sex Dev ; 12(4): 180-190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29804107

RESUMO

The transformer (tra) gene, which is a female-determining master gene in the housefly Musca domestica, acts as a memory device for sex determination via its auto-regulatory function, i.e., through the contribution of the TRA protein to female-specific splicing of its own pre-mRNA. The TRA protein contains 4 small domains that are specifically conserved among TRA proteins (domains 1-4). Domain 2, also named TRA-CAM domain, is the most conserved, but its function remains unknown. To examine whether these domains are involved in the auto-regulatory function, we performed in vitro splicing assays using a tra minigene containing a partial genomic sequence of the M. domestica tra (Mdtra) gene. Co-transfection of the Mdtra minigene and an MdTRA protein expression vector into cultured insect cells strongly induced female-specific splicing of the minigene. A series of deletion mutation analyses demonstrated that these domains act complementarily to induce female-specific splicing. Domain 1 and the TRA-CAM domain were necessary for the female-specific splicing when the MdTRA protein lacked both domains 3 and 4. In this situation, mutation of the well-conserved 3 amino acids (GEG) in the TRA-CAM domain significantly reduced the female-specific splicing activity of MdTRA. GST-pull down analyses demonstrated that the MdTRA protein specifically enriched on the male-specific exonic region (exon 2b), which contains the putative TRA/TRA-2 binding sites, and that the GEG mutation disrupts this enrichment. Since the MdTRA protein interacts with its own pre-mRNA through TRA-2, our findings suggest that the conserved amino acid residues in the TRA-CAM domain may be crucial for the interaction between MdTRA and TRA-2, enhancing MdTRA recruitment on its pre-mRNA to induce female-specific splicing of tra in the housefly.


Assuntos
Sequência Conservada , Moscas Domésticas/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Precursores de RNA/genética , Splicing de RNA/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Éxons/genética , Feminino , Genes de Insetos , Proteínas de Insetos/metabolismo , Masculino , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo
19.
Biochem Biophys Res Commun ; 500(3): 583-588, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665362

RESUMO

During oogenesis, oocytes prepare for embryonic development following fertilization. The mechanisms underlying this process are still unknown. Recently, it has been suggested that a loosened chromatin structure is involved in pluripotency and totipotency in embryonic stem (ES) cells and early preimplantation embryos, respectively. Here, we explored chromatin looseness in oocytes by fluorescence recovery after photobleaching (FRAP) using enhanced green fluorescent protein-tagged histone H2B. The results indicated that the chromatin in growing oocytes was already highly loosened to a level comparable to that in early preimplantation embryos. To elucidate the mechanism underlying the loosened chromatin structure in oocytes, we focused on chromodomain helicase DNA binding protein 9 (Chd9), which is highly expressed in growing oocytes. The oocytes from Chd9 knockout mice (Chd9-/-) generated using the CRISPR/Cas9 system exhibited a less loosened chromatin structure than that of wild-type mice, suggesting that Chd9 is involved in the loosened chromatin structure in growing oocytes. These results suggest that a loosened chromatin structure, which is mediated by Chd9, is a prerequisite for the acquisition of totipotency after fertilization.


Assuntos
Cromatina/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Sistemas CRISPR-Cas/genética , Proliferação de Células , DNA Helicases , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transativadores/deficiência
20.
Appl Entomol Zool ; 52(3): 497-509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798494

RESUMO

Sexual fate of the sawfly, Athalia rosae (Hymenoptera: Tenthredinidae) is determined by the complementary sex determination (CSD) mechanism as is the case in honeybees. However, to date, genes involved in sex determination have not been identified in this species. In this study, we attempted to identify orthologs of complementary sex-determiner (csd), feminizer (fem), and doublesex (dsx) from the A. rosae genome, all of which are crucial components of the sex determination cascade in the honeybee. As a result, we identified a sawfly ortholog of dsx (designated as Ardsx). Rapid amplification of cDNA ends (RACE) using total RNA extracted from male and female larvae identified three male-specific variants and three female-specific variants. Comparison between the full-length Ardsx cDNAs and the genomic sequence revealed that exon 5 was differentially spliced between the male- and female-specific variants. RT-PCR analysis demonstrated that Ardsx pre-mRNA was spliced alternatively in a sex-dependent manner at almost all the developmental stages. RNAi-mediated knockdown of Ardsx in males caused severe defects in the reproductive organs and, notably, induced development of the ovipository apparatus containing the dorsal pair of blades and the sheath. These males also showed abnormalities in testes and seminal vesicles and lacked mature sperm. The present study provides the first direct evidence that dsx is essential for sexual development in hymenopteran species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...