Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Microb Sci ; 3: 100165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518162

RESUMO

Protozoan parasites of the genus Leishmania are responsible for leishmaniases, one of the most important anthropozoonotic diseases affecting millions of people worldwide. To date, there are no approved vaccines against leishmaniases for humans. At present, available treatment options lack specificity, which may lead to drug resistance and often cause adverse effects. Genomic analysis of Leishmania spp. revealed that most of the annotated genes encode hypothetical proteins, yet the functions of those proteins are still unknown. Characterization of these proteins is, hence, of utmost importance for the discovery of new therapeutic targets against leishmaniases. Reporter gene systems, or reporters, are powerful tools that enable the detection and measurement of targeted gene expression when introduced to a biological system. Over the years, numerous expression systems containing various reporters have been employed in characterizing several novel genes essential for parasite development. Such systems can be used to predict the subcellular localization of targeted proteins, screen antileishmanial drugs, and monitor the progression of infection within the vector and vertebrate hosts, among other uses. Therefore, it is critical to comprehend the available reporter gene expression systems to choose the most suitable for each study.

2.
Front Cell Infect Microbiol ; 12: 852902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903202

RESUMO

Multiple genes and proteins have been identified as differentially expressed in the stages of the Leishmania life cycle. The differentiation processes are implicated in specific transcriptional and proteomic adjustments driven by gene expression regulation mechanisms. Leishmania parasites lack gene-specific transcriptional control, and gene expression regulation mostly depends on posttranscriptional mechanisms. Due to the lack of transcriptional regulation, criticism regarding the relevance of transcript quantification as a possible and efficient prediction of protein levels is recurrent in studies that use transcriptomic information. The advent of high-throughput technologies has improved the analysis of genomes, transcriptomes and proteomes for different organisms under several conditions. Nevertheless, defining the correlation between transcriptional and proteomic profiles requires arduous and expensive work and remains a challenge in Leishmania. In this review, we analyze transcriptomic and proteomic data for several Leishmania species in two different stages of the parasite life cycle: metacyclogenesis and amastigogenesis (amastigote differentiation). We found a correlation between mRNA and protein levels of 60.9% and 69.8% for metacyclogenesis and amastigogenesis, respectively; showing that majority mRNA and protein levels increase or decrease concomitantly. Among the analyzed genes that did not present correlation indicate that transcriptomic data should be carefully interpreted as protein expression. We also discuss possible explanations and mechanisms involved for this lack of correlation.


Assuntos
Leishmania , Parasitos , Animais , Leishmania/genética , Leishmania/metabolismo , Estágios do Ciclo de Vida/genética , Parasitos/genética , Proteoma/análise , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Microb Genom ; 6(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886592

RESUMO

The outcome of Leishmania infection is strongly influenced by the host's genetic background. BALB/c mice are susceptible to Leishmania infection, while C57BL/6 mice show discrete resistance. Central to the fate of the infection is the availability of l-arginine and the related metabolic processes in the host and parasite. Depending on l-arginine availability, nitric oxide synthase 2 (NOS2) of the host cell produces nitric oxide (NO) controlling the parasite growth. On the other hand, Leishmania can also use host l-arginine for the production of polyamines through its own arginase activity, thus favouring parasite replication. Considering RNA-seq data, we analysed the dual modulation of host and parasite gene expression of BALB/c or C57BL/6 mouse bone marrow-derived macrophages (BMDMs) after 4 h of infection with Leishmania amazonensis wild-type (La-WT) or L. amazonensis arginase knockout (La-arg-). We identified 12 641 host transcripts and 8282 parasite transcripts by alignment analysis with the respective Mus musculus and L. mexicana genomes. The comparison of BALB/c_La-arg-versus BALB/c_La-WT revealed 233 modulated transcripts, with most related to the immune response and some related to the amino acid transporters and l-arginine metabolism. In contrast, the comparison of C57BL/6_La-arg-vs. C57BL/6_La-WT revealed only 30 modulated transcripts, including some related to the immune response but none related to amino acid transport or l-arginine metabolism. The transcriptome profiles of the intracellular amastigote revealed 94 modulated transcripts in the comparison of La-arg-_BALB/c vs. La-WT_BALB/c and 45 modulated transcripts in the comparison of La-arg-_C57BL/6 vs. La-WT_C57BL/6. Taken together, our data present new insights into the impact of parasite arginase activity on the orchestration of the host gene expression modulation, including in the immune response and amino acid transport and metabolism, mainly in susceptible BALB/c-infected macrophages. Moreover, we show how parasite arginase activity affects parasite gene expression modulation, including amino acid uptake and amastin expression.


Assuntos
Arginase/genética , Perfilação da Expressão Gênica/métodos , Leishmania/genética , Óxido Nítrico Sintase Tipo II/genética , Animais , Feminino , Regulação da Expressão Gênica , Patrimônio Genético , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Análise de Sequência de RNA
5.
J Vis Exp ; (156)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32150165

RESUMO

Leishmania spp. are protozoan parasites that cause leishmaniases, diseases that present a wide spectrum of clinical manifestations from cutaneous to visceral lesions. Currently, 12 million people are estimated to be infected with Leishmania worldwide and over 1 billion people live at the risk of infection. Leishmania amazonensis is endemic in Central and South America and usually leads to the cutaneous form of the disease, which can be directly visualized in an animal model. Therefore, L. amazonensis strains are good models for cutaneous leishmaniasis studies because they are also easily cultivated in vitro. C57BL/6 mice mimic the L. amazonensis-driven disease progression observed in humans and are considered one of the best mice strains model for cutaneous leishmaniasis. In the vertebrate host, these parasites inhabit macrophages despite the defense mechanisms of these cells. Several studies use in vitro macrophage infection assays to evaluate the parasite infectivity under different conditions. However, the in vitro approach is limited to an isolated cell system that disregards the organism's response. Here, we compile an in vivo murine infection method that provides a systemic physiological overview of the host-parasite interaction. The detailed protocol for the in vivo infection of C57BL/6 mice with L. amazonensis comprises parasite differentiation into infective amastigotes, mice footpad cutaneous inoculation, lesion development, and parasite load determination. We propose this well-established method as the most adequate method for physiological studies of the host immune and metabolic responses to cutaneous leishmaniasis.


Assuntos
Modelos Animais de Doenças , Interações Hospedeiro-Parasita/imunologia , Leishmania/imunologia , Leishmania/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Virulência , Animais , Feminino , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835767

RESUMO

BACKGROUND: Leishmaniases are neglected tropical diseases that are caused by Leishmania, being endemic worldwide. L-arginine is an essential amino acid that is required for polyamines production on mammal cells. During Leishmania infection of macrophages, L-arginine is used by host and parasite arginase to produce polyamines, leading to parasite survival; or, by nitric oxide synthase 2 to produce nitric oxide leading to parasite killing. Here, we determined the metabolomic profile of BALB/c macrophages that were infected with L. amazonensis wild type or with L. amazonensis arginase knockout, correlating the regulation of L-arginine metabolism from both host and parasite. METHODS: The metabolites of infected macrophages were analyzed by capillary electrophoresis coupled with mass spectrometry (CE-MS). The metabolic fingerprints analysis provided the dual profile from the host and parasite. RESULTS: We observed increased levels of proline, glutamic acid, glutamine, L-arginine, ornithine, and putrescine in infected-L. amazonensis wild type macrophages, which indicated that this infection induces the polyamine production. Despite this, we observed reduced levels of ornithine, proline, and trypanothione in infected-L. amazonensis arginase knockout macrophages, indicating that this infection reduces the polyamine production. CONCLUSIONS: The metabolome fingerprint indicated that Leishmania infection alters the L-arginine/polyamines/trypanothione metabolism inside the host cell and the parasite arginase impacts on L-arginine metabolism and polyamine production, defining the infection fate.


Assuntos
Arginina/metabolismo , Leishmania mexicana/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Metabolômica , Animais , Análise Discriminante , Feminino , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas , Metaboloma , Camundongos Endogâmicos BALB C , Parasitos/fisiologia , Prolina/metabolismo
7.
Sci Rep ; 9(1): 19841, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882833

RESUMO

The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.


Assuntos
Perfilação da Expressão Gênica/métodos , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , Transcriptoma , Animais , Interações Hospedeiro-Parasita , Leishmania/fisiologia , Leishmaniose/genética , Leishmaniose/parasitologia , Macrófagos/parasitologia , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Curr Opin Microbiol ; 52: 110-115, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31306995

RESUMO

The outcome of Leishmania infection depends on the parasite species and the host immune response. Virulence factors have been extensively studied over the years in an effort to find efficient vaccines and/or treatments for Leishmania infection. Arginase activity in Leishmania has been described as an essential player for the polyamines pathway, impacting parasite replication and infectivity. Considering previous studies showing that the absence of arginase activity leads to low infectivity of Leishmania amazonensis, we reanalyzed transcriptomic data comparing both promastigotes and axenic amastigotes from L. amazonensis wild type (La-WT) and L. amazonensis arginase knockout (La-arg-) backgrounds. The analysis produced a new compilation of modulated transcripts that indicated the role of arginase not only in the polyamines pathway but also in the modulation of virulence factors involved in parasite recognition, growth and differentiation.


Assuntos
Arginase/metabolismo , Leishmania braziliensis/enzimologia , Leishmania braziliensis/patogenicidade , Fatores de Virulência/metabolismo , Animais , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leishmania braziliensis/genética , Leishmaniose/imunologia , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Transcriptoma
9.
Artigo em Inglês | MEDLINE | ID: mdl-30949455

RESUMO

Leishmaniases are neglected diseases that cause a large spectrum of clinical manifestations, from cutaneous to visceral lesions. The initial steps of the inflammatory response involve the phagocytosis of Leishmania and the parasite replication inside the macrophage phagolysosome. Melatonin, the darkness-signaling hormone, is involved in modulation of macrophage activation during infectious diseases, controlling the inflammatory response against parasites. In this work, we showed that exogenous melatonin treatment of BALB/c macrophages reduced Leishmania amazonensis infection and modulated host microRNA (miRNA) expression profile, as well as cytokine production such as IL-6, MCP-1/CCL2, and, RANTES/CCL9. The role of one of the regulated miRNA (miR-294-3p) in L. amazonensis BALB/c infection was confirmed with miRNA inhibition assays, which led to increased expression levels of Tnf and Mcp-1/Ccl2 and diminished infectivity. Additionally, melatonin treatment or miR-30e-5p and miR-302d-3p inhibition increased nitric oxide synthase 2 (Nos2) mRNA expression levels and nitric oxide (NO) production, altering the macrophage activation state and reducing infection. Altogether, these data demonstrated the impact of melatonin treatment on the miRNA profile of BALB/c macrophage infected with L. amazonensis defining the infection outcome.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/metabolismo , Leishmaniose/imunologia , Macrófagos/imunologia , Melatonina/metabolismo , Animais , Células Cultivadas , Quimiocina CCL2/biossíntese , Modelos Animais de Doenças , Feminino , Leishmania/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , MicroRNAs/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
10.
Front Immunol ; 9: 2792, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555476

RESUMO

Parasite recognition by Toll-like receptors (TLRs) contributes to macrophage activation and subsequent control of Leishmania infection through the coordinated production of pro-inflammatory and microbicidal effector molecules. The modulation of microRNA (miRNA) expression by Leishmania infection potentially mediates the post-transcriptional regulation of the expression of genes involved in leishmanicidal activity. Here, the contribution of TLR signaling to the miRNA profile and gene expression was evaluated in Leishmania amazonensis-infected murine macrophages. The infectivity of L. amazonensis was higher in murine bone marrow-derived macrophages from mice knockout for myeloid differentiation factor 88 (MyD88-/-), TLR2 (TLR2-/-), or TLR4 (TLR4-/-) than wild type C57BL/6 (WT). L. amazonensis infection of WT macrophages modulated the expression of 32% of the miRNAs analyzed, while 50% were upregulated. The absence of MyD88, TLR2, and TLR4 altered the percentage of miRNAs modulated during L. amazonensis infection, including the downregulation of let-7e expression. Moreover, the absence of signals mediated by MyD88, TLR2, or TLR4 reduced nitric oxide synthase 2 (Nos2) mRNA expression during infection. Indeed, the inhibition of let-7e increased levels of the Nos2 mRNA and NOS2 (or iNOS) protein and nitric oxide (NO) production in L. amazonensis-infected macrophages (4-24 h). The absence of TLR2 and inhibition of let-7e increased the expression of the arginase 1 (Arg1) mRNA but did not alter the protein level during infection. However, higher levels of the L-arginine transporters Cat2B and Cat1 were detected in the absence of Myd88 signaling during infection but were not altered following let-7e inhibition. The inhibition of let-7e impacted the global expression of genes in the TLR pathway by upregulating the expression of recognition and adaptors molecules, such as Tlr6, Tlr9, Ly96, Tirap, Traf 6, Ticam1, Tollip, Casp8, Map3k1, Mapk8, Nfkbib, Nfkbil1, Ppara, Mapk8ip3, Hspd1, and Ube2n, as well as immunomodulators, such as Ptgs2/Cox2, Csf 2, Csf 3, Ifnb1, Il6ra, and Ilr1, impacting NOS2 expression, NO production and parasite infectiveness. In conclusion, L. amazonensis infection alters the TLR signaling pathways by modulating the expression of miRNAs in macrophages to subvert the host immune responses.


Assuntos
Regulação da Expressão Gênica/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos/imunologia , MicroRNAs/metabolismo , Receptores Toll-Like/imunologia , Animais , Feminino , Leishmaniose/genética , Leishmaniose/patologia , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Receptores Toll-Like/genética
11.
Parasit Vectors ; 11(1): 421, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012182

RESUMO

BACKGROUND: The leishmaniases comprise a spectrum of clinical manifestations caused by different species of Leishmania. Identification of species is important for diagnosis, treatment and follow-up management. However, there is no gold standard for species identification. High resolution melting analysis (HRM) offers a possibility to differentiate Leishmania species without the need for processing of the PCR-product. The amino acid permease 3 (aap3) gene is an exclusive target for trypanosomatids and is conserved among Leishmania spp., thus it can be a valuable target for an HRM assay for diagnosis of the leishmaniases. RESULTS: The HRM dissociation profiles of three amplicons targeting the aap3-coding region allowed the discrimination of L. (Leishmania) donovani, L. (L.) infantum, L. (L.) major, L. (L.) tropica, L. (L.) mexicana, L. (L.) amazonensis, L. (Viannia) braziliensis, L. (V.) guyanensis, L. (V.) lainsoni, L. (V.) naiffi and L. (V.) shawi using DNA from promastigote cultures. The protocol was validated with DNA samples from clinical infection in humans and a cat, naturally infected sand flies, and experimentally infected mice. CONCLUSIONS: HRM analysis using the aap3 coding sequence as target is a relatively cheap, fast and robust strategy to detect and discriminate Leishmania species from all the endemic regions worldwide. The target and method proved to be useful in clinical, field and experimental samples, thus it could be used as a tool in diagnosis as well as ecological and epidemiological studies.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Leishmania/classificação , Leishmania/enzimologia , Leishmaniose/diagnóstico , Animais , Sequência de Bases , DNA de Protozoário/genética , Leishmaniose/parasitologia , Camundongos , Desnaturação de Ácido Nucleico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
PLoS One ; 12(11): e0187186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29135983

RESUMO

BACKGROUND: Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. METHODOLOGY/PRINCIPAL FINDINGS: The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. CONCLUSIONS/SIGNIFICANCE: We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.


Assuntos
Arginase/metabolismo , Leishmania/metabolismo , Óxido Nítrico/biossíntese , Animais , Citometria de Fluxo , Leishmania/enzimologia , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Óxido Nítrico Sintase/metabolismo , Transcriptoma
14.
PLoS Negl Trop Dis ; 11(10): e0006025, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29073150

RESUMO

BACKGROUND: Leishmania uses the amino acid L-arginine as a substrate for arginase, enzyme that produces urea and ornithine, last precursor of polyamine pathway. This pathway is used by the parasite to replicate and it is essential to establish the infection in the mammalian host. L-arginine is not synthesized by the parasite, so its uptake occurs through the amino acid permease 3 (AAP3). AAP3 is codified by two copies genes (5.1 and 4.7 copies), organized in tandem in the parasite genome. One copy presents the expression regulated by L-arginine availability. METHODOLOGY/PRINCIPAL FINDINGS: RNA-seq data revealed 14 amino acid transporters differentially expressed in the comparison of La-WT vs. La-arg- promastigotes and axenic amastigotes. The 5.1 and 4.7 aap3 transcripts were down-regulated in La-WT promastigotes vs. axenic amastigotes, and in La-WT vs. La-arg- promastigotes. In contrast, transcripts of other transporters were up-regulated in the same comparisons. The amount of 5.1 and 4.7 aap3 mRNA of intracellular amastigotes was also determined in sample preparations from macrophages, obtained from BALB/c and C57BL/6 mice and the human THP-1 lineage infected with La-WT or La-arg-, revealing that the genetic host background is also important. We also determined the aap3 mRNA and AAP3 protein amounts of promastigotes and axenic amastigotes in different environmental growth conditions, varying pH, temperature and L-arginine availability. Interestingly, the increase of temperature increased the AAP3 level in plasma membrane and consequently the L-arginine uptake, independently of pH and L-arginine availability. In addition, we demonstrated that besides the plasma membrane localization, AAP3 was also localized in the glycosome of L. amazonensis promastigotes and axenic amastigotes. CONCLUSIONS/SIGNIFICANCE: In this report, we described the differential transcriptional profiling of amino acids transporters from La-WT and La-arg- promastigotes and axenic amastigotes. We also showed the increased AAP3 levels under amino acid starvation or its decrease in L-arginine supplementation. The differential AAP3 expression was determined in the differentiation of promastigotes to amastigotes conditions, as well as the detection of AAP3 in the plasma membrane reflecting in the L-arginine uptake. Our data suggest that depending on the amino acid pool and arginase activity, Leishmania senses and could use an alternative route for the amino acid transport in response to stress signaling.


Assuntos
Sistemas de Transporte de Aminoácidos/classificação , Sistemas de Transporte de Aminoácidos/metabolismo , Arginase/metabolismo , Arginina/metabolismo , Leishmania/enzimologia , Macrófagos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Arginase/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Transcriptoma
15.
PLoS Negl Trop Dis ; 11(10): e0006026, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29077741

RESUMO

BACKGROUND: Leishmania is a protozoan parasite that alternates its life cycle between the sand-fly vector and the mammalian host. This alternation involves environmental changes and leads the parasite to dynamic modifications in morphology, metabolism, cellular signaling and regulation of gene expression to allow for a rapid adaptation to new conditions. The L-arginine pathway in L. amazonensis is important during the parasite life cycle and interferes in the establishment and maintenance of the infection in mammalian macrophages. Host arginase is an immune-regulatory enzyme that can reduce the production of nitric oxide by activated macrophages, directing the availability of L-arginine to the polyamine pathway, resulting in parasite replication. In this work, we performed transcriptional profiling to identify differentially expressed genes in L. amazonensis wild-type (La-WT) versus L. amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. METHODOLOGY/PRINCIPAL FINDINGS: A total of 8253 transcripts were identified in La-WT and La-arg- promastigotes and axenic amastigotes, about 60% of them codifying hypothetical proteins and 443 novel transcripts, which did not match any previously annotated genes. Our RNA-seq data revealed that 85% of genes were constitutively expressed. The comparison of transcriptome and metabolome data showed lower levels of arginase and higher levels of glutamate-5-kinase in La-WT axenic amastigotes compared to promastigotes. The absence of arginase activity in promastigotes increased the levels of pyrroline 5-carboxylate reductase, but decreased the levels of arginosuccinate synthase, pyrroline 5-carboxylate dehydrogenase, acetylornithine deacetylase and spermidine synthase transcripts levels. These observations can explain previous metabolomic data pointing to the increase of L-arginine, citrulline and L-glutamate and reduction of aspartate, proline, ornithine and putrescine. Altogether, these results indicate that arginase activity is important in Leishmania gene expression modulation during differentiation and adaptation to environmental changes. Here, we confirmed this hypothesis with the identification of differential gene expression of the enzymes involved in biosynthesis of amino acids, arginine and proline metabolism and arginine biosynthesis. CONCLUSIONS/SIGNIFICANCE: All data provided information about the transcriptomic profiling and the expression levels of La-WT and La-arg- promastigotes and axenic amastigotes. These findings revealed the importance of arginase in parasite survival and differentiation, and indicated the existence of a coordinated response in the absence of arginase activity related to arginine and polyamine pathways.


Assuntos
Arginase/metabolismo , Regulação da Expressão Gênica , Leishmania mexicana/genética , Análise de Sequência de RNA , Arginase/genética , Arginina/biossíntese , Arginina/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes , Leishmania mexicana/enzimologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Macrófagos/parasitologia , Óxido Nítrico/metabolismo , Poliaminas/metabolismo
16.
PLoS Negl Trop Dis ; 10(9): e0004972, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27606425

RESUMO

BACKGROUND: Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. CONCLUSIONS/SIGNIFICANCE: This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine metabolism is affected by this protein in the parasite. Finally, these findings may be helpful for the development of alternative anti-leishmanial drugs that target purine pathway.


Assuntos
Antiparasitários/uso terapêutico , Resistência a Medicamentos/genética , Retículo Endoplasmático/genética , Leishmania major/genética , Leishmaniose/tratamento farmacológico , Tubercidina/uso terapêutico , Sequência de Aminoácidos , Animais , Linhagem Celular , Leishmania major/efeitos dos fármacos , Estrutura Terciária de Proteína , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...