Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(38): 16916-16921, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714120

RESUMO

Single-walled carbon nanotubes (SWNTs) were subjected to alkylation using alkyl bromide and alkyl dibromide, and the photoluminescence (PL) properties of the resulting alkylated SWNTs were characterized. Two new PL peaks were observed along with the intrinsic PL peak at 976 nm when alkyl bromide was used (SWNT-Bu: ∼1095 and 1230 nm, SWNT-Bn: 1104 and 1197 nm). In contrast, the use of α,α'-dibromo-o-xylene as an alkyl dibromide primarily resulted in only one new PL peak, which was observed at 1231 nm. The results revealed that the Stokes shift of the new peaks was strongly influenced by the addition patterns of the substituents. In addition, the time-resolved PL decay profiles of the alkylated SWNTs revealed that the PL peaks possessing a larger Stokes shift had longer exciton lifetimes. The up-conversion PL (UCPL) intensity of the alkylated SWNTs at excitation wavelengths of 1100 and 1250 nm was estimated to be ∼2.38 and ∼2.35 times higher than that of the as-dispersed SWNTs, respectively.

2.
Nat Commun ; 6: 8920, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26568250

RESUMO

Photoluminescence phenomena normally obey Stokes' law of luminescence according to which the emitted photon energy is typically lower than its excitation counterparts. Here we show that carbon nanotubes break this rule under one-photon excitation conditions. We found that the carbon nanotubes exhibit efficient near-infrared photoluminescence upon photoexcitation even at an energy lying >100-200 meV below that of the emission at room temperature. This apparently anomalous phenomenon is attributed to efficient one-phonon-assisted up-conversion processes resulting from unique excited-state dynamics emerging in an individual carbon nanotube with accidentally or intentionally embedded localized states. These findings may open new doors for energy harvesting, optoelectronics and deep-tissue photoluminescence imaging in the near-infrared optical range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...