Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35204093

RESUMO

Recognition and clearance of apoptotic cells by phagocytes (also known as efferocytosis), primarily mediated by macrophages, are essential to terminate lung inflammatory responses and promote tissue repair after injury. The Nrf2 transcription factor is crucial for cytoprotection and host defense. Previously, we showed sustained neutrophilic lung inflammation in Nrf2-deficient (Nrf2-/-) mice after hyperoxia-induced lung injury in vivo, but the mechanisms underlying this abnormal phenotype remain unclear. To examine whether Nrf2 regulates apoptotic neutrophil clearance, we used the alveolar macrophages (AMФs) and bone-marrow-derived macrophages (BMDMФs) of wild-type (WT) and Nrf2-/- mice. We found that the efferocytic ability of AMФ was impaired in hyperoxia-exposed mice's lungs, but the effect was more pronounced in Nrf2-/- mice. Importantly, AMФ-mediated efferocytosis remained impaired in Nrf2-/- mice recovering from injury but was restored to the basal state in the wild-type counterparts. Hyperoxia affected apoptotic neutrophil binding, not internalization, in both WT and Nrf2-/- BMDMФs, but the effect was more significant in the latter cells. Augmenting Nrf2 activity restored hyperoxia attenuated efferocytosis in WT, but not in Nrf2-/- macrophages. However, the loss of Nrf2 in neutrophils affected their uptake by WT macrophages. Collectively, these results demonstrate that Nrf2 is required for optimal macrophage-mediated efferocytosis and that activating Nrf2 may provide a physiological way to accelerate apoptotic cell clearance after oxidant injury.

2.
Biotechnol Appl Biochem ; 52(Pt 2): 121-33, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18494609

RESUMO

The antiproliferative effects of 15-LOX (15-lipoxygenase) metabolites of arachidonic acid {(15S)-HPETE [(15S)-hydroperoxyeicosatetraenoic acid] and (15S)-HETE [(15S)-hydroxyeicosatetraenoic acid]} and the mechanism(s) involved were studied in the human T-cell leukaemia cell line Jurkat. (15S)-HPETE, the hydroperoxy metabolite of 15-LOX, inhibited the growth of Jurkat cells 3 h after exposure and with an IC(50) value of 10 microM. The hydroxy metabolite of 15-LOX, (15S)-HETE, on the other hand, inhibited the growth of Jurkat cells after 6 h of exposure and with an IC(50) value of 40 microM. The cells exposed to 10 microM (15S)-HPETE for 3 h or to 40 microM (15S)-HETE for 6 h showed increased expression of Fas ligand and FADD (Fas-associated death domain), caspase 8 activation, Bid (BH3-interacting domain death agonist) cleavage, decrease in mitochondrial membrane potential, cytochrome c release, caspase 3 activation, PARP-1 [poly(ADP-ribose) polymerase-1] cleavage and DNA fragmentation, suggesting the involvement of both extrinsic and intrinsic death pathways. Further studies on ROS (reactive oxygen species) generation revealed the involvement of NADPH oxidase. In conclusion, the present study indicates that NADPH oxidase-induced ROS generation activates the Fas-mediated death pathway.


Assuntos
Proteína Ligante Fas/metabolismo , Leucotrienos/química , Leucotrienos/farmacologia , Peróxidos Lipídicos/química , Peróxidos Lipídicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADPH Oxidases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estereoisomerismo , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...