Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 80(23): 11877-87, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26447842

RESUMO

endo-Tricyclo[3.2.1.0(2,4)]oct-8-ylidene is a foiled carbene reaction intermediate. It was generated by thermolyzing Δ(3)-1,3,4-oxadiazoline precursors dissolved in benzaldehyde and acetophenone. The products appear to stem from direct insertion of the carbene's divalent C atom into the α-bonds of the carbonyl compounds; however, this is only superficial. The strict stereochemistry observed is due to the topologies of the reaction intermediates of the proposed two-step mechanism. Bimolecular nucleophilic addition generates bent 1,3-zwitterions. The neutral reaction intermediates undergo pinacolic rearrangements to form the observed adducts. Product ratios reflect the migratory aptitudes of the carbonyl compounds' α-substituents. The carbene reaction was modeled using DFT. The singlet carbene's bicoordinate C atom bends 31° toward the endo-fused cyclopropane bond, elongating it to r = 1.69 Å. The resulting trishomocyclopropyl HOMO{-1} is a three-center two-electron bond responsible for the electron-deficient carbene's nucleophilicity. Its calculated properties are consistent with this assertion: (1) singlet-triplet (ΔE(S-T)) energy gap of -25 kcal/mol, (2) gas-phase proton affinity (PA) value of 272 kcal/mol, (3) hard and soft acid and base (HSAB) ΔN value of -0.2 in its initial reaction with the carbonyl compounds, and (4) negative frontier orbital interaction values ΔΔE(PhC(O)H) = -4.38 eV and ΔΔE(PhC(O)Me) = -3.97 eV.

2.
J Org Chem ; 78(10): 4879-85, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23586674

RESUMO

Oxadiazoline 6 was synthesized to generate endo-tricyclo[3.2.1.0(2,4)]octan-8-ylidene (3) by either photolysis or thermolysis. Diastereomer 6a thermally decomposed twice as fast as 6b. Carbene 3 was trapped stereoselectively by acrylonitrile and diethylamine in high yields. It behaved as a nucleophilic carbene with electron-poor alkenes, like acrylonitrile, but as an electrophile with very electron-rich species, such as diethylamine. However, when the reactions were performed in cyclohexane and cyclohexene, isomerization of 3 was favored. Replacement of the double bond in 7-norbornenylidene (1) by the single bond in the endo-fused cyclopropane unit of carbene 3 led to similar outcomes. Carbene 3 rightfully belongs to the family of foiled carbenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...