Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836051

RESUMO

Polyvinyl alcohol (PVOH) exhibits outstanding gas-barrier properties, which favor its use as a biodegradable, high-barrier coating on food-packaging films, possibly in combination with modified atmospheres. Nonetheless, its high sensitivity to water can result in a severe loss of barrier properties, significantly limiting its applications with fresh foods and in high-humidity conditions. In this work, the water vapor (PWV) and oxygen permeability (PO2) of high-barrier biodegradable films with PVOH/PLA + wax double coatings were extensively characterized in a wide range of relative humidity (from 30 to 90%), aimed at understanding the extent of the interaction of water with the wax and the polymer matrices and the impact of this on the permeation process. What is more, a mathematical model was applied to the PWV data set in order to assess its potential to predict the permeability of the multilayer films by varying storage/working relative humidity (RH) conditions. The carbon dioxide permeability (PCO2) of the films was further evaluated, and the corresponding permselectivity values were calculated. The study was finally augmented through modified atmosphere packaging (MAP) tests, which were carried out on double-coated films loaded with 0 and 5% wax, and UV-Vis analyses. The results pointed out the efficacy of the PLA + wax coating layer in hampering the permeation of water molecules, thus reducing PVOH swelling, as well as the UV-shielding ability of the multilayer structures. Moreover, the MAP tests underlined the suitability of the double-coated films for being used as a sustainable alternative for the preservation of foods under modified atmospheres.

2.
Polymers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765534

RESUMO

Microplastics (MPs) pollution has emerged as one of the world's most serious environmental issues, with harmful consequences for ecosystems and human health. One proposed solution to their accumulation in the environment is the replacement of nondegradable plastics with biodegradable ones. However, due to the lack of true biodegradability in some ecosystems, they also give rise to biodegradable microplastics (BioMPs) that negatively impact different ecosystems and living organisms. This review summarizes the current literature on the impact of BioMPs on some organisms-higher plants and fish-relevant to the food chain. Concerning the higher plants, the adverse effects of BioMPs on seed germination, plant biomass growth, penetration of nutrients through roots, oxidative stress, and changes in soil properties, all leading to reduced agricultural yield, have been critically discussed. Concerning fish, it emerged that BioMPs are more likely to be ingested than nonbiodegradable ones and accumulate in the animal's body, leading to impaired skeletal development, oxidative stress, and behavioral changes. Therefore, based on the reviewed pioneering literature, biodegradable plastics seem to be a new threat to environmental health rather than an effective solution to counteract MP pollution, even if serious knowledge gaps in this field highlight the need for additional rigorous investigations to understand the potential risks associated to BioMPs.

3.
Polymers (Basel) ; 14(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890535

RESUMO

Heat-shrinkable films, largely made of polyolefins and widely employed in the packaging sector as collation or barrier films, due to their short service life, are held responsible for high environmental impact. One possible strategy for reduction in their carbon footprint can be the use of biodegradable polymers. Thus, this work aimed to develop novel, heat-shrinkable, fully biodegradable films for green packaging applications and to analyze their functional performance. Films were obtained from blends of amorphous polylactic acid (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT) at different mass ratios and compatibilized with a chain extender. They were produced by means of a lab-scale film blowing extrusion apparatus and characterized in terms of physical-mechanical properties and shrinkability. The influence of the processing parameters during the extrusion blowing process on the films' behavior was investigated, highlighting the effects of blend composition and stretching drawing conditions. Shrinkage tests demonstrated that the produced films have shrinkability values in the typical range of mono-oriented films (ca. 60-80% in machine direction and ca. 10-20% in transverse direction). Moreover, the shrinkage in machine direction increases both with the mass flow rate, the take-up ratio to blow-up ratio and the bubble cooling of the film blowing process, and with the PLA content into the blend. In particular, films at higher PLA content also exhibit higher transparency and stiffness.

4.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267757

RESUMO

Biodegradable polymers suffer from inherent performance limitations that severely limit their practical application. Their functionalization by coating technology is a promising strategy to significantly improve their physical properties for food packaging. In this study, we investigated the double coating technique to produce multifunctional, high barrier and heat-sealable biodegradable films. The systems consisted of a web layer, made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT), which was first coated with a poly(vinyl) alcohol based layer, providing high barrier, and then with a second layer of PLA + ethylene-bis-stereamide (EBS) wax (from 0 to 20%), to provide sealability and improve moisture resistance. The films were fully characterized in terms of chemical, thermal, morphological, surface and functional properties. The deposition of the PVOH coating alone, with a thickness of 5 µm, led to a decrease in the oxygen transmission rate from 2200 cm3/m2 d bar, for the neat substrate (thickness of 22 µm), to 8.14 cm3/m2 d bar (thickness of 27 µm). The deposition of the second PLA layer did not affect the barrier properties but provided heat sealability, with a maximum bonding strength equal to 6.53 N/25 mm. The EBS wax incorporation into the PLA slightly increased the surface hydrophobicity, since the water contact angle passed from 65.4°, for the neat polylactide layer, to 71° for the 20% wax concentration. With respect to the substrate, the double-coated films exhibited increased stiffness, with an elastic modulus ca. three times higher, and a reduced elongation at break, which, however still remained above 75%. Overall, the developed double-coated films exhibited performances comparable to those of the most common synthetic polymer films used in the packaging industry, underlining their suitability for the packaging of sensitive foods with high O2-barrier requirements.

5.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443957

RESUMO

Currently, plastic packaging represents a global challenge and has become a key point of attention for governments, media and consumers due to the visibility of the waste it generates. Despite their high resource efficiency, the perceived non-recyclability of polymeric films risks precluding them from being a relevant packaging solution in a circular economy approach. In this regard, the aim of this study was to implement a strategy to try closing the loop, via the mechanical recycling of post-consumer flexible packaging of small size (denoted as Fil-s) to obtain new films. In particular, two lots of Fil-s were used, which are PE/PP blends differing for the PP content and the presence of polar contaminants. The suitability for film blowing extrusion of these recycled materials, as such and after the addition of a compatibilizer and/or a lamellar nanosilicate, was evaluated. It was first evidenced that the difficulty of producing blown films with the pristine recycled materials, due to the frequent bubble breakages, occurring even at low draw ratios. Moreover, the shear and extensional rheological behavior of all Fil-s based systems was usefully correlated with their processability features, evidencing the key roles of the nanofiller to stabilize the bubble and of the compatibilizer to ensure a uniform film deformation, avoiding its premature breakage. Even if the adopted upgrading strategies allowed the production of blown films with both types of Fil-s, the different components of the recycled matrices were proven to significantly affect their processability and final film performances.

6.
Mar Pollut Bull ; 164: 112051, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515817

RESUMO

This conference report summarizes the current challenges of researching microplastics pollution in the ocean as debated by international experts and stakeholders at a workshop held in San Sebastián, Spain, 1-2 October 2019. The transdisciplinary, co-learning approach of this report stressed the need to incorporate multiple perspective in solving the problem of microplastics and resulted in three proposed actions: (i) filtering microplastics from waste waters; (ii) mandatory ecolabels on plastic products packages; and (iii) circular economy of packaging plastics.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental , Microplásticos , Oceanos e Mares , Espanha , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...