Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698922

RESUMO

BACKGROUND: Oxidized apolipoprotein B (oxLDL) and oxidized ApoA-I (oxHDL) are proatherogenic. Their prognostic value for assessing high-risk plaques by coronary computed tomography angiography (CCTA) is missing. METHODS: In a prospective, observational study, 306 participants with cardiovascular disease (CVD) had extensive lipoprotein profiling. Proteomics analysis was performed on isolated oxHDL, and atherosclerotic plaque assessment was accomplished by quantitative CCTA. RESULTS: Patients were predominantly White, overweight men (58.5%) on statin therapy (43.5%). Increase in LDL-C, ApoB, small dense LDL-C (P < 0.001 for all), triglycerides (P = 0.03), and lower HDL function were observed in the high oxLDL group. High oxLDL associated with necrotic burden (NB; ß = 0.20; P < 0.0001) and fibrofatty burden (FFB; ß = 0.15; P = 0.001) after multivariate adjustment. Low oxHDL had a significant reverse association with these plaque characteristics. Plasma oxHDL levels better predicted NB and FFB after adjustment (OR, 2.22; 95% CI, 1.27-3.88, and OR, 2.80; 95% CI, 1.71-4.58) compared with oxLDL and HDL-C. Interestingly, oxHDL associated with fibrous burden (FB) change over 3.3 years (ß = 0.535; P = 0.033) when compared with oxLDL. Combined Met136 mono-oxidation and Trp132 dioxidation of HDL showed evident association with coronary artery calcium score (r = 0.786; P < 0.001) and FB (r = 0.539; P = 0.012) in high oxHDL, whereas Met136 mono-oxidation significantly associated with vulnerable plaque in low oxHDL. CONCLUSION: Our findings suggest that the investigated oxidized lipids are associated with high-risk coronary plaque features and progression over time in patients with CVD. CLINICALTRIALS: gov NCT01621594. FUNDING: National Heart, Lung, and Blood Institute at the NIH Intramural Research Program.


Assuntos
Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Masculino , Apolipoproteína A-I , Apolipoproteínas B , LDL-Colesterol , Placa Aterosclerótica/diagnóstico por imagem , Estudos Prospectivos
2.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37471145

RESUMO

BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Lipoproteínas HDL , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Apolipoproteína A-I , HDL-Colesterol , Fosfolipídeos
3.
Am J Physiol Renal Physiol ; 324(3): F301-F314, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727945

RESUMO

Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.


Assuntos
Rim , Espectrometria de Massas em Tandem , Camundongos , Animais , Cromatografia Líquida , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , RNA/metabolismo , Expressão Gênica
4.
Nat Commun ; 13(1): 6622, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333356

RESUMO

Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial networks are incompletely understood and it is unclear how they might affect contractile fiber-type. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated differentially. Proteomic analyses of indirect flight, jump, and leg muscles, together with muscles misexpressing known fiber-type specification factor salm, identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization through evolutionarily conserved transcription factors cut, salm, and H15.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Músculo Esquelético/metabolismo , Proteínas com Domínio T/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232786

RESUMO

ApoB-100 is a member of a large lipid transfer protein superfamily and is one of the main apolipoproteins found on low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) particles. Despite its clinical significance for the development of cardiovascular disease, there is limited information on apoB-100 structure. We have developed a novel method based on the "divide and conquer" algorithm, using PSIPRED software, by dividing apoB-100 into five subunits and 11 domains. Models of each domain were prepared using I-TASSER, DEMO, RoseTTAFold, Phyre2, and MODELLER. Subsequently, we used disuccinimidyl sulfoxide (DSSO), a new mass spectrometry cleavable cross-linker, and the known position of disulfide bonds to experimentally validate each model. We obtained 65 unique DSSO cross-links, of which 87.5% were within a 26 Å threshold in the final model. We also evaluated the positions of cysteine residues involved in the eight known disulfide bonds in apoB-100, and each pair was measured within the expected 5.6 Å constraint. Finally, multiple domains were combined by applying constraints based on detected long-range DSSO cross-links to generate five subunits, which were subsequently merged to achieve an uninterrupted architecture for apoB-100 around a lipoprotein particle. Moreover, the dynamics of apoB-100 during particle size transitions was examined by comparing VLDL and LDL computational models and using experimental cross-linking data. In addition, the proposed model of receptor ligand binding of apoB-100 provides new insights into some of its functions.


Assuntos
Apolipoproteínas B , Cisteína , Apolipoproteína B-100 , Apolipoproteínas B/metabolismo , Simulação por Computador , Dissulfetos , Ligantes , Lipoproteínas LDL/química , Lipoproteínas VLDL , Modelos Estruturais , Sulfóxidos
6.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180221

RESUMO

Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.


Assuntos
Proteínas de Transporte , Células Fotorreceptoras Retinianas Bastonetes , Animais , Feminino , Masculino , Camundongos , Transdução de Sinal Luminoso , Mamíferos/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/genética , Transducina/metabolismo , Proteínas de Transporte/metabolismo
7.
Hum Mol Genet ; 31(13): 2137-2154, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35075486

RESUMO

Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Morte Celular/genética , Modelos Animais de Doenças , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/patologia
8.
Cardiovasc Res ; 118(13): 2847-2858, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34668514

RESUMO

AIMS: Prolyl hydroxylation is a post-translational modification that regulates protein stability, turnover, and activity. The proteins that catalyze prolyl hydroxylation belong to the 2-oxoglutarate- and iron-dependent oxygenase family of proteins. 2-oxoglutarate- and iron-dependent oxygenase domain-containing protein 1 (Ogfod1), which hydroxylates a proline in ribosomal protein s23 is a newly described member of this family. The aims of this study were to investigate roles for Ogfod1 in the heart, and in the heart's response to stress. METHODS AND RESULTS: We isolated hearts from wild-type (WT) and Ogfod1 knockout (KO) mice and performed quantitative proteomics using tandem mass Tag labelling coupled to liquid chromatography and tandem mass spectrometry (LC-MS/MS) to identify protein changes. Ingenuity pathway analysis identified 'Urate Biosynthesis/Inosine 5'-phosphate Degradation' and 'Purine Nucleotides Degradation II (Aerobic)' as the most significantly enriched pathways. We performed metabolomics analysis and found that both purine and pyrimidine pathways were altered with the purine nucleotide inosine 5'-monophosphate showing a 3.5-fold enrichment in KO hearts (P = 0.011) and the pyrimidine catabolism product beta-alanine showing a 1.7-fold enrichment in KO hearts (P = 0.014). As changes in these pathways have been shown to contribute to cardioprotection, we subjected isolated perfused hearts to ischaemia and reperfusion (I/R). KO hearts showed a 41.4% decrease in infarct size and a 34% improvement in cardiac function compared to WT hearts. This protection was also evident in an in vivo I/R model. Additionally, our data show that treating isolated perfused WT hearts with carnosine, a metabolite of beta-alanine, improved protection in the context of I/R injury, whereas treating KO hearts with carnosine had no impact on recovery of function or infarct size. CONCLUSIONS: Taken together, these data show that Ogfod1 deletion alters the myocardial proteome and metabolome to confer protection against I/R injury.


Assuntos
Carnosina , Proteínas de Transporte , Traumatismo por Reperfusão Miocárdica , Proteínas Nucleares , Animais , Camundongos , beta-Alanina/metabolismo , Carnosina/farmacologia , Cromatografia Líquida , Infarto , Inosina , Ferro , Isquemia , Ácidos Cetoglutáricos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Nucleotídeos , Oxigenases , Fosfatos , Prolina , Proteoma , Nucleotídeos de Purina , Pirimidinas , Proteínas Ribossômicas , Espectrometria de Massas em Tandem , Ácido Úrico , Proteínas Nucleares/genética , Proteínas de Transporte/genética
9.
J Physiol ; 600(3): 547-567, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837710

RESUMO

Mitochondrial adaptations are fundamental to differentiated function and energetic homeostasis in mammalian cells. But the mechanisms that underlie these relationships remain poorly understood. Here, we investigated organ-specific mitochondrial morphology, connectivity and protein composition in a model of extreme mammalian metabolism, the least shrew (Cryptotis parva). This was achieved through a combination of high-resolution 3D focused ion beam electron microscopy imaging and tandem mass tag mass spectrometry proteomics. We demonstrate that liver and kidney mitochondrial content are equivalent to the heart, permitting assessment of mitochondrial adaptations in different organs with similar metabolic demand. Muscle mitochondrial networks (cardiac and skeletal) are extensive, with a high incidence of nanotunnels - which collectively support the metabolism of large muscle cells. Mitochondrial networks were not detected in the liver and kidney as individual mitochondria are localized with sites of ATP consumption. This configuration is not observed in striated muscle, likely due to a homogeneous ATPase distribution and the structural requirements of contraction. These results demonstrate distinct, fundamental mitochondrial structural adaptations for similar metabolic demand that are dependent on the topology of energy utilization process in a mammalian model of extreme metabolism. KEY POINTS: Least shrews were studied to explore the relationship between metabolic function, mitochondrial morphology and protein content in different tissues. Liver and kidney mitochondrial content and enzymatic activity approaches that of the heart, indicating similar metabolic demand among tissues that contribute to basal and maximum metabolism. This allows an examination of mitochondrial structure and composition in tissues with similar maximum metabolic demands. Mitochondrial networks only occur in striated muscle. In contrast, the liver and kidney maintain individual mitochondria with limited reticulation. Muscle mitochondrial reticulation is the result of dense ATPase activity and cell-spanning myofibrils which require networking for adequate metabolic support. In contrast, liver and kidney ATPase activity is localized to the endoplasmic reticulum and basolateral membrane, respectively, generating a locally balanced energy conversion and utilization. Mitochondrial morphology is not driven by maximum metabolic demand, but by the cytosolic distribution of energy-utilizing systems set by the functions of the tissue.


Assuntos
Músculo Estriado , Musaranhos , Animais , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , América do Norte , Musaranhos/anatomia & histologia
10.
PLoS One ; 16(11): e0255860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847148

RESUMO

The molecular mechanisms underlying morphological diversity in retinal cell types are poorly understood. We have previously reported that several members of the Copine family of Ca-dependent membrane adaptors are expressed in Retinal Ganglion Cells and transcriptionally regulated by Brn3 transcription factors. Several Copines are enriched in the retina and their over-expression leads to morphological changes -formation of elongated processes-, reminiscent of neurites, in HEK293 cells. However, the role of Copines in the retina is largely unknown. We now investigate Cpne4, a Copine whose expression is restricted to Retinal Ganglion Cells. Over-expression of Cpne4 in RGCs in vivo led to formation of large varicosities on the dendrites but did not otherwise visibly affect dendrite or axon formation. Protein interactions studies using yeast two hybrid analysis from whole retina cDNA revealed two Cpne4 interacting proteins-Host Cell Factor 1 and Morn2. Mass Spectrometry analysis of retina lysate pulled down using Cpne4 or its vonWillebrand A domain showed 207 interacting proteins. A Gene Ontology analysis of the discovered proteins suggests that Cpne4 is involved in several metabolic and signaling pathways in the retina.


Assuntos
Axônios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Neuritos/metabolismo , Transfecção
11.
Cureus ; 13(6): e15925, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34336428

RESUMO

Tuberculosis (TB) has long been known as an acquired immunodeficiency syndrome (AIDS) defining illness in human immunodeficiency virus (HIV) patients, causing reciprocal advantage for both pathogens throughout the course of the disease, not just constituting a burden for the patient, but also impacting public health globally. We report a case of a 42-year-old man who presented with shortness of breath, generalized lymphadenopathy and weight loss. Subsequently diagnosed with HIV/AIDS and generalized ganglionar TB. Initial computed tomography (CT) of the chest showed extensive mediastinal involvement with large right loculated pleural effusion, with growth of acid-fast bacilli (AFB) on culture. Biopsy of lymph nodes confirmed pathologic changes correlating with M. tuberculosis (Caseating granulomatous inflammation), ruling out the possibility of lymphoproliferative disorder. Multiple factors contribute to the immune system decline in AIDS patients, moreover the rapid depletion of Tuberculosis antigen-specific CD4+ T before generalized CD4+T cells. Early assessment for the presence of co-infection and guidance of targeted therapy is critical for management and an important factor in the expected recovery of such patients. Therefore, understanding the pathogenesis of the co-infection, diagnostic approach, possible complications, and the action of concurrent therapy highly active antiretroviral therapy (HAART)/anti-Tuberculosis treatment as well as drug cytotoxicity is paramount.

12.
Ann Rheum Dis ; 80(2): 209-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32988843

RESUMO

OBJECTIVES: Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. METHODS: Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. RESULTS: Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. CONCLUSIONS: Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy.


Assuntos
Granulócitos/patologia , Lúpus Eritematoso Sistêmico/imunologia , Proteínas de Membrana/análise , Neutrófilos/patologia , Proteoma/análise , Estudos de Casos e Controles , Heterogeneidade Genética , Granulócitos/fisiologia , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Microvasos/metabolismo , Neutrófilos/fisiologia , Fosforilação , Proteômica
13.
PLoS Genet ; 16(12): e1009259, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33362196

RESUMO

Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice (Rabgef1-/-) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1-/- photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1-/- retina reveals altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype.


Assuntos
Autofagia , Endocitose , Fatores de Troca do Nucleotídeo Guanina/genética , Neurogênese , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Animais , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Fotorreceptoras/citologia , Degeneração Retiniana/genética , Transcriptoma
15.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115748

RESUMO

Formation of autoantibodies to carbamylated proteins (anti-CarP) is considered detrimental in the prognosis of erosive rheumatoid arthritis (RA). The source of carbamylated antigens and the mechanisms by which anti-CarP antibodies promote bone erosion in RA remain unknown. Here, we find that neutrophil extracellular traps (NETs) externalize carbamylated proteins and that RA subjects develop autoantibodies against carbamylated NET (cNET) antigens that, in turn, correlate with levels of anti-CarP. Transgenic mice expressing the human RA shared epitope (HLADRB1* 04:01) immunized with cNETs develop antibodies to citrullinated and carbamylated proteins. Furthermore, anti-carbamylated histone antibodies correlate with radiographic bone erosion in RA subjects. Moreover, anti-carbamylated histone-immunoglobulin G immune complexes promote osteoclast differentiation and potentiate osteoclast-mediated matrix resorption. These results demonstrate that carbamylated proteins present in NETs enhance pathogenic immune responses and bone destruction, which may explain the association between anti-CarP and erosive arthritis in RA.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Animais , Autoanticorpos , Histonas , Humanos , Camundongos , Neutrófilos/patologia , Carbamilação de Proteínas
16.
Nutrients ; 12(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178279

RESUMO

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both shared and different cardiovascular effects, and commonly used fish oil supplements have considerably varied EPA/DHA ratios. AIMS: We compared the effects of fish oil supplements with different EPA/DHA ratios on lipoprotein metabolism. METHODS: In a double-blind, randomized cross-over study, normolipidemic adults (n = 30) consumed 12 g/day of EPA-rich (EPA/DHA: 2.3) or DHA-rich (EPA/DHA: 0.3) fish oil for 8-weeks, separated by an 8-week washout period. RESULTS: Both fish oil supplements similarly lowered plasma TG levels and TG-related NMR parameters versus baseline (p < 0.05). There were no changes in plasma cholesterol-related parameters due to either fish oil, although on-treatment levels for LDL particle number were slightly higher for DHA-rich oil compared with EPA-rich oil (p < 0.05). Both fish oil supplements similarly altered HDL subclass profile and proteome, and down regulated HDL proteins related to inflammation, with EPA-rich oil to a greater extent. Furthermore, EPA-rich oil increased apoM abundance versus DHA-rich oil (p < 0.05). CONCLUSIONS: Overall, fish oil supplements with varied EPA/DHA ratios had similar effects on total lipids/lipoproteins, but differences were observed in lipoprotein subfraction composition and distribution, which could impact on the use of EPA versus DHA for improving cardiovascular health.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Triglicerídeos/sangue , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino
17.
Am J Physiol Renal Physiol ; 317(5): F1098-F1110, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390267

RESUMO

Numerous candidate biomarkers in urine extracellular vesicles (EVs) have been described for kidney diseases, but none are yet in clinical use, possibly due to a lack of proper normalization. Proper normalization corrects for normal biological variation in urine flow rate or concentration, which can vary by over one order of magnitude. Here, we observed inter- and intra-animal variation in urine excretion rates of small EVs (<200 nm in diameter) in healthy rats as a series of six 4-h fractions. To visualize intra-animal variation, we normalized a small EV excretion rate to a peak excretion rate, revealing a circadian pattern for each rat. This circadian pattern was distinct from urine volume, urine albumin, urine creatinine, and urine albumin-to-creatinine ratio. Furthermore, urine small EV excretion was not significantly altered by sex, food/water deprivation, or ischemic acute kidney injury. Urine excretion of the exosomal/small EV marker protein tumor susceptibility gene 101 (TSG101) displayed a similar circadian pattern to urine small EV excretion; both measurements were highly correlated (R2 = 0.85), with an average stoichiometry of 10.0 molecules of TSG101/vesicle in healthy rats. The observed stoichiometry of TSG101/vesicle in rat urine translated to human spot urine samples (10.2 molecules/vesicle) and cultured kidney-derived cell lines (human embryonic kidney-293 and normal rat kidney 52E cells). Small EV number and its surrogate, TSG101 protein, can normalize for circadian variation when testing candidate biomarkers in small EVs. Just as creatinine has emerged as the customary normalization factor for liquid-phase urine biomarkers, vesicle number and its surrogate, molecules of exosome/small EV-associated TSG101, should be considered as viable, normalizing factors for small EV biomarkers.


Assuntos
Ritmo Circadiano/fisiologia , Vesículas Extracelulares/fisiologia , Traumatismo por Reperfusão/urina , Animais , Biomarcadores/urina , Linhagem Celular , Feminino , Privação de Alimentos , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Privação de Água
18.
Biology (Basel) ; 8(3)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336888

RESUMO

We describe simple, sensitive and robust methods to monitor lipoprotein remodeling and cholesterol and apolipoprotein exchange, using fluorescent Lissamine Rhodamine B head-group tagged phosphatidylethanolamine (*PE) as a lipoprotein reference marker. Fluorescent Bodipy cholesterol (*Chol) and *PE directly incorporated into whole plasma lipoproteins in proportion to lipoprotein cholesterol and phospholipid mass, respectively. *Chol, but not *PE, passively exchanged between isolated plasma lipoproteins. Fluorescent apoA-I (*apoA-I) specifically bound to high-density lipoprotein (HDL) and remodeled *PE- and *Chol-labeled synthetic lipoprotein-X multilamellar vesicles (MLV) into a pre-ß HDL-like particle containing *PE, *Chol, and *apoA-I. Fluorescent MLV-derived *PE specifically incorporated into plasma HDL, whereas MLV-derived *Chol incorporation into plasma lipoproteins was similar to direct *Chol incorporation, consistent with apoA-I-mediated remodeling of fluorescent MLV to HDL with concomitant exchange of *Chol between lipoproteins. Based on these findings, we developed a model system to study lipid transfer by depositing fluorescent *PE and *Chol-labeled on calcium silicate hydrate crystals, forming dense lipid-coated donor particles that are readily separated from acceptor lipoprotein particles by low-speed centrifugation. Transfer of *PE from donor particles to mouse plasma lipoproteins was shown to be HDL-specific and apoA-I-dependent. Transfer of donor particle *PE and *Chol to HDL in whole human plasma was highly correlated. Taken together, these studies suggest that cell-free *PE efflux monitors apoA-I functionality.

19.
Cardiovasc Res ; 115(2): 385-394, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165576

RESUMO

Aims: Knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice abrogates mitochondrial Ca2+ uptake and permeability transition pore (PTP) opening. However, hearts from global MCU-KO mice are not protected from ischaemic injury. We aimed to investigate whether adaptive alterations occur in cell death signalling pathways in the hearts of global MCU-KO mice. Methods and results: First, we examined whether cell death may occur via an upregulation in necroptosis in MCU-KO mice. However, our results show that neither RIP1 inhibition nor RIP3 knockout afford protection against ischaemia-reperfusion injury in MCU-KO as in wildtype (WT) hearts, indicating that the lack of protection cannot be explained by upregulation of necroptosis. Instead, we have identified alterations in cyclophilin D (CypD) signalling in MCU-KO hearts. In the presence of a calcium ionophore, MCU-KO mitochondria take up calcium and do undergo PTP opening. Furthermore, PTP opening in MCU-KO mitochondria has a lower calcium retention capacity (CRC), suggesting that the calcium sensitivity of PTP is higher. Phosphoproteomics identified an increase in phosphorylation of CypD-S42 in MCU-KO. We investigated the interaction of CypD with the putative PTP component ATP synthase and identified an approximately 50% increase in this interaction in MCU-KO cardiac mitochondria. Mutation of the novel CypD phosphorylation site S42 to a phosphomimic reduced CRC, increased CypD-ATP synthase interaction by approximately 50%, and increased cell death in comparison to a phospho-resistant mutant. Conclusion: Taken together these data suggest that MCU-KO mitochondria exhibit an increase in phosphorylation of CypD-S42 which decreases PTP calcium sensitivity thus allowing activation of PTP in the absence of an MCU-mediated increase in matrix calcium.


Assuntos
Canais de Cálcio/deficiência , Cálcio/metabolismo , Ciclofilinas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/deficiência , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Animais , Canais de Cálcio/genética , Ciclofilinas/genética , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Mitocondriais/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais
20.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429362

RESUMO

Mono-ADP-ribosylation of an (arginine) protein catalyzed by ADP-ribosyltransferase 1 (ART1) - i.e., transfer of ADP-ribose from NAD to arginine - is reversed by ADP-ribosylarginine hydrolase 1 (ARH1) cleavage of the ADP-ribose-arginine bond. ARH1-deficient mice developed cardiomyopathy with myocardial fibrosis, decreased myocardial function under dobutamine stress, and increased susceptibility to ischemia/reperfusion injury. The membrane repair protein TRIM72 was identified as a substrate for ART1 and ARH1; ADP-ribosylated TRIM72 levels were greater in ARH1-deficient mice following ischemia/reperfusion injury. To understand better the role of TRIM72 and ADP-ribosylation, we used C2C12 myocytes. ARH1 knockdown in C2C12 myocytes increased ADP-ribosylation of TRIM72 and delayed wound healing in a scratch assay. Mutant TRIM72 (R207K, R260K) that is not ADP-ribosylated interfered with assembly of TRIM72 repair complexes at a site of laser-induced injury. The regulatory enzymes ART1 and ARH1 and their substrate TRIM72 were found in multiple complexes, which were coimmunoprecipitated from mouse heart lysates. In addition, the mono-ADP-ribosylation inhibitors vitamin K1 and novobiocin inhibited oligomerization of TRIM72, the mechanism by which TRIM72 is recruited to the site of injury. We propose that a mono-ADP-ribosylation cycle involving recruitment of TRIM72 and other regulatory factors to sites of membrane damage is critical for membrane repair and wound healing following myocardial injury.


Assuntos
ADP-Ribosilação , Cardiomiopatias/metabolismo , Proteínas de Transporte/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Cicatrização , ADP Ribose Transferases/metabolismo , Animais , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Movimento Celular , Dobutamina , Feminino , Fibrose , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , N-Glicosil Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...