Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0228123, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909766

RESUMO

Enterovirus D68 (EV-D68) contributes significantly to pathogen-induced respiratory illnesses and severe neurological disorders like acute flaccid myelitis. We lack EV-D68 preventive measures, and knowledge of its molecular and cellular biology is incomplete. Multiple studies have highlighted the role of membrane compartments and autophagy during picornavirus multiplication. Galitska et al. found that EV-D68 also exploits cellular autophagic compartments and relies on autophagic machinery as pro-viral factors (G. Galitska, A. Jassey, M. A. Wagner, N. Pollack, et al., mBio e02141-23, 2023, https://doi.org/10.1128/mbio.02141-23). Surprisingly, failure of the autophagic compartment to acidify early during EV-D68 infection causes a delay in RNA synthesis that has not been reported for other enteroviruses. This delay appears to reflect the inability of viral proteins 2B and 3A to engage membranes stably, leading to their degradation in the cytoplasm. Observations like this underscore the importance of studying individual members of the virus genus. It will be interesting to understand how this phenomenon connects to EV-D68 pathogenesis, if at all.

2.
PLoS Biol ; 21(1): e3001693, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689548

RESUMO

RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/fisiologia , Infecções por Enterovirus/virologia , Sítios Internos de Entrada Ribossomal , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Interações Hospedeiro-Patógeno
3.
PLoS Pathog ; 14(5): e1007086, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782554

RESUMO

RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways.


Assuntos
Peptídeo Hidrolases/metabolismo , Fosfolipídeos/biossíntese , Picornaviridae/enzimologia , Proteínas Virais/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Brefeldina A/farmacologia , Membrana Celular/ultraestrutura , Dactinomicina/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Biogênese de Organelas , Fosfatos de Fosfatidilinositol/metabolismo , Poliovirus/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia
4.
PLoS Pathog ; 14(4): e1007036, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702686

RESUMO

At the culmination of poliovirus (PV) multiplication, membranes are observed that contain phosphatidylinositol-4-phosphate (PI4P) and appear as vesicular clusters in cross section. Induction and remodeling of PI4P and membranes prior to or concurrent with genome replication has not been well studied. Here, we exploit two PV mutants, termed EG and GG, which exhibit aberrant proteolytic processing of the P3 precursor that substantially delays the onset of genome replication and/or impairs virus assembly, to illuminate the pathway of formation of PV-induced membranous structures. For WT PV, changes to the PI4P pool were observed as early as 30 min post-infection. PI4P remodeling occurred even in the presence of guanidine hydrochloride, a replication inhibitor, and was accompanied by formation of membrane tubules throughout the cytoplasm. Vesicular clusters appeared in the perinuclear region of the cell at 3 h post-infection, a time too slow for these structures to be responsible for genome replication. Delays in the onset of genome replication observed for EG and GG PVs were similar to the delays in virus-induced remodeling of PI4P pools, consistent with PI4P serving as a marker of the genome-replication organelle. GG PV was unable to convert virus-induced tubules into vesicular clusters, perhaps explaining the nearly 5-log reduction in infectious virus produced by this mutant. Our results are consistent with PV inducing temporally distinct membranous structures (organelles) for genome replication (tubules) and virus assembly (vesicular clusters). We suggest that the pace of formation, spatiotemporal dynamics, and the efficiency of the replication-to-assembly-organelle conversion may be set by both the rate of P3 polyprotein processing and the capacity for P3 processing to yield 3AB and/or 3CD proteins.


Assuntos
Membrana Celular/química , Organelas/virologia , Fosfatos de Fosfatidilinositol/metabolismo , Poliomielite/virologia , Poliovirus/patogenicidade , Proteínas Virais/metabolismo , Replicação Viral , Membrana Celular/metabolismo , Genoma Viral , Células HeLa , Humanos , Mutação , Fosfatos de Fosfatidilinositol/química , Poliomielite/genética , Poliomielite/metabolismo , Poliovirus/genética , Análise Espaço-Temporal , Proteínas Virais/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...