RESUMO
Introduction: In the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes. Methods: In this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV. Results: Testing of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses. Conclusion: In conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.
Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/genética , Proteínas do Envelope Viral/química , Anticorpos Antivirais , Drosophila melanogaster , Escherichia coli/genética , Camundongos Endogâmicos C57BL , Vacinas de Subunidades AntigênicasRESUMO
Introduction: Zika virus (ZIKV) infection has been associated to Guillain-Barré syndrome in adults and congenital malformations during pregnancy, leading to the manifestation of congenital Zika syndrome (CZS). The ZIKV envelope protein (EZIKV), prominently displayed on the virus surface, is a primary target for the humoral immune response. However, limited information exists regarding its capacity to induce cellular immunity, particularly in pregnant women with a history of ZIKV infection. The EZIKV protein comprises three domains: the central domain (EDI), a dimerization domain (EDII), and a domain responsible for binding to the cell surface receptor (EDIII). To examine the regions of EZIKV targeted by cellular immunity, we examined cellular immune responses in a cohort of mothers infected with ZIKV, whose infants exhibited microcephaly. Methods: To assess the ZIKV-specific response, we used inactivated virus and different recombinant viral envelope proteins (EZIKV, EDI/IIZIKV and EDIIIZIKV). All women in the study contracted the infection during pregnancy, with 72% experiencing symptoms such as fever, rash, joint pain, and retro-orbital pain. Peripheral blood mononuclear cells (PMBC) were collected post- ZIKV diagnosis confirmation, with a median time of 18 months (IQR 13.5-19) after parturition. Using the ELISpot assay, we quantified specific interferon-gamma (IFNγ) producing cells by stimulating PBMC with either inactivated ZIKV particles or equimolar amounts of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV. Results and discussion: Our findings demonstrate the induction of IFN-γ producing cells in PBMC from ZIKV-convalescent mothers, whose infants manifested microcephaly, upon stimulation with both inactivated ZIKV particles and recombinant proteins. The identification of immunodominant regions within ZIKV can contribute for the development of targeted treatments and vaccine candidates tailored for pregnant women.
RESUMO
Recent outbreaks of Zika virus (ZIKV) infection have highlighted the need for a better understanding of ZIKV-specific immune responses. The ZIKV envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface and it is the main target of the protective immune response. EZIKV protein contains the central domain (EDI), a dimerization domain containing the fusion peptide (EDII), and a domain that binds to the cell surface receptor (EDIII). In this study, we performed a systematic comparison of the specific immune response induced by different EZIKV recombinant proteins (EZIKV, EDI/IIZIKV or EDIIIZIKV) in two mice strains. Immunization induced high titers of E-specific antibodies which recognized ZIKV-infected cells and neutralized the virus. Furthermore, immunization with EZIKV, EDI/IIZIKV and EDIIIZIKV proteins induced specific IFNγ-producing cells and polyfunctional CD4+ and CD8+ T cells. Finally, we identified 4 peptides present in the envelope protein (E1–20, E51–70, E351–370 and E361–380), capable of inducing a cellular immune response to the H-2Kd and H-2Kb haplotypes. In summary, our work provides a detailed assessment of the immune responses induced after immunization with different regions of the ZIKV envelope protein.
RESUMO
In 2015, the world witnessed the resurgence and global spread of Zika virus (ZIKV). This arbovirus infection is associated with Guillain-Barré syndrome in adults and with devastating congenital malformations during pregnancy. Despite scientific efforts, the development of a vaccine capable of inducing long-term protection has been challenging. Without a safe and efficacious licensed vaccine, control of virus transmission is based on vector control, but this strategy has been shown to be inefficient. An effective and protective vaccine relies on several requirements, which include: (i) induction of specific immune response against immunodominant antigens; (ii) selection of adjuvant-antigen formulation; and (iii) assessment of safety, effectiveness, and long-term protection. In this commentary, we provide a brief overview about the current efforts for the development of an efficacious ZIKV vaccine, covering the most important preclinical trials up to the formulations that are now being evaluated in clinical trials.
Assuntos
Síndrome de Guillain-Barré , Vacinas Virais , Infecção por Zika virus , Zika virus , Adulto , Feminino , Síndrome de Guillain-Barré/epidemiologia , Humanos , Gravidez , Infecção por Zika virus/prevenção & controleRESUMO
Conventional dendritic cells (cDCs) are specialized in antigen presentation. In the mouse spleen, cDCs are classified in cDC1s and cDC2s, and express DEC205 and DCIR2 endocytic receptors, respectively. Monoclonal antibodies (mAbs) αDEC205 (αDEC) and αDCIR2 have been fused to different antigens to deliver them to cDC1s or cDC2s. We immunized mice with αDEC and αDCIR2 fused to an antigen using Poly(I:C) as adjuvant. The initial immune response was analyzed from days 3 to 6 after the immunization. We also studied the influence of a booster dose. Our results showed that antigen targeting to cDC1s promoted a pro-inflammatory TH 1 cell response. Antigen targeting to cDC2s induced TFH cells, GCs, and plasma cell differentiation. After boost, antigen targeting to cDC1s improved the TH 1 cell response and induced TH 1-like TFH cells that led to an increase in specific antibody titers and IgG class switch. Additionally, a population of regulatory T cells was also observed. Antigen targeting to cDC2s did not improve the specific antibody response after boost. Our results add new information on the immune response induced after the administration of a booster dose with αDEC and αDCIR2 fusion mAbs. These results may be useful for vaccine design using recombinant mAbs.
Assuntos
Células Dendríticas/imunologia , Receptores de Superfície Celular/imunologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Formação de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/imunologiaRESUMO
The recent outbreaks of Zika virus (ZIKV) infection and the potential association with Guillain-Barré syndrome in adults and with congenital abnormalities have highlighted the urgency for an effective vaccine. The ZIKV Envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface, and has been evaluated together with the pre-membrane protein (prM) of the viral coat as a vaccine candidate in clinical trials. In this study, we performed a head-to-head comparison of the immune response induced by different EZIKV-based vaccine candidates in mice. We compared different platforms (DNA, recombinant protein), adjuvants (poly (I:C), CpG ODN 1826) and immunization strategies (homologous, heterologous). The hierarchy of adjuvant potency showed that poly (I:C) was a superior adjuvant than CpG ODN. While poly (I:C) assisted immunization reached a plateau in antibody titers after two doses, the CpG ODN group required an extra immunization dose. Besides, the administration of poly (I:C) induced higher EZIKV-specific cellular immune responses than CpG ODN. We also show that immunization with homologous prime-boost EZIKV protein + poly (I:C) regimen induced a more robust humoral response than homologous DNA (pVAX-EZIKV) or heterologous regimens (DNA/protein or protein/DNA). A detailed analysis of cellular immune responses revealed that homologous (EZIKV + poly (I:C)) and heterologous (pVAX-EZIKV/EZIKV + poly (I:C)) prime-boost regimens induced the highest magnitude of IFN-γ secreting cells and cytokine-producing CD4+ T cells. Overall, our data demonstrate that homologous EZIKV + poly (I:C) prime-boost immunization is sufficient to induce more robust specific-EZIKV humoral and cellular immune responses than the other strategies that contemplate homologous DNA (pVAX-EZIKV) or heterologous (pVAX-EZIKV/EZIKV + poly (I:C), and vice-versa) immunizations.
Assuntos
Vacinas de DNA , Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Animais , Imunidade Celular , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Envelope Viral , Zika virus/imunologia , Infecção por Zika virus/prevenção & controleRESUMO
The recent outbreaks of Zika virus (ZIKV) infection and the potential association with Guillain-Barré syndrome in adults and with congenital abnormalities have highlighted the urgency for an effective vaccine. The ZIKV Envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface, and has been evaluated together with the pre-membrane protein (prM) of the viral coat as a vaccine candidate in clinical trials. In this study, we performed a head-to-head comparison of the immune response induced by different EZIKV-based vaccine candidates in mice. We compared different platforms (DNA, recombinant protein), adjuvants (poly (I:C), CpG ODN 1826) and immunization strategies (homologous, heterologous). The hierarchy of adjuvant potency showed that poly (I:C) was a superior adjuvant than CpG ODN. While poly (I:C) assisted immunization reached a plateau in antibody titers after two doses, the CpG ODN group required an extra immunization dose. Besides, the administration of poly (I:C) induced higher EZIKV-specific cellular immune responses than CpG ODN. We also show that immunization with homologous prime-boost EZIKV protein + poly (I:C) regimen induced a more robust humoral response than homologous DNA (pVAX-EZIKV) or heterologous regimens (DNA/protein or protein/DNA). A detailed analysis of cellular immune responses revealed that homologous (EZIKV + poly (I:C)) and heterologous (pVAX-EZIKV/EZIKV + poly (I:C)) prime-boost regimens induced the highest magnitude of IFN-? secreting cells and cytokine-producing CD4+ T cells. Overall, our data demonstrate that homologous EZIKV + poly (I:C) prime-boost immunization is sufficient to induce more robust specific-EZIKV humoral and cellular immune responses than the other strategies that contemplate homologous DNA (pVAX-EZIKV) or heterologous (pVAX-EZIKV/EZIKV + poly (I:C), and vice-versa) immunizations
RESUMO
Cellular immune responses are implicated in resistance to HIV and have been considered for the development of an effective vaccine. Despite their safety profile, subunit vaccines need to be delivered combined with an adjuvant. In the last years, in vivo antigen targeting to dendritic cells (DCs) using chimeric monoclonal antibodies (mAb) against the DC endocytic receptor DEC205/CD205 was shown to support long-term T cell immunity. Here, we evaluated the ability of different adjuvants to modulate specific cellular immune response when eight CD4+ HIV-derived epitopes (HIVBr8) were targeted to DEC205+ DCs in vivo. Immunization with two doses of αDECHIVBr8 mAb along with poly(I:C) induced Th1 cytokine production and higher frequency of HIV-specific polyfunctional and long-lived T cells than MPL or CpG ODN-assisted immunization. Although each adjuvant elicited responses against the 8 epitopes present in the vaccine, the magnitude of the T cell response was higher in the presence of poly(I:C). Moreover, poly(I:C) up regulated the expression of costimulatory molecules in both cDC1 and cDC2 DCs subsets. In summary, the use of poly(I:C) in a vaccine formulation that targets multiple epitopes to the DEC205 receptor improved the potency and the quality of HIV-specific responses when compared to other vaccine-adjuvant formulations. This study highlights the importance of the rational selection of antigen/adjuvant combination to potentiate the desired immune responses.
Assuntos
Vacinas contra a AIDS/imunologia , Células Dendríticas/imunologia , Epitopos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV/imunologia , Poli I-C , Linfócitos T/imunologia , Adjuvantes Imunológicos , Animais , Antígenos CD/metabolismo , Biomarcadores , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Imunofenotipagem , Ativação Linfocitária , Camundongos , Poli I-C/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismoRESUMO
Immunization of BALB/c mice with HIVBr18, a DNA vaccine containing 18 CD4+ T cell epitopes from human immunodeficiency virus (HIV), induced specific CD4+ and CD8+ T cell responses in a broad, polyfunctional and persistent manner. With the aim of increasing the immunogenicity of this vaccine, the effect of Propionibacterium acnes as an adjuvant was evaluated. The adjuvant effects of this bacterium have been extensively demonstrated in both experimental and clinical settings. Herein, administration of two doses of HIVBr18, in the presence of P. acnes, increased the proliferation of HIV-1-specific CD4+ and CD8+ T lymphocytes, the polyfunctional profile of CD4+ T cells, the production of IFN-γ, and the number of recognized vaccine-encoded peptides. One of the bacterial components responsible for most of the adjuvant effects observed was a soluble polysaccharide extracted from the P. acnes cell wall. Furthermore, within 10 weeks after immunization, the proliferation of specific T cells and production of IFN-γ were maintained when the whole bacterium was administered, demonstrating a greater effect on the longevity of the immune response by P. acnes. Even with fewer immunization doses, P. acnes was found to be a potent adjuvant capable of potentiating the effects of the HIVBr18 vaccine. Therefore, P. acnes may be a potential adjuvant to aid this vaccine in inducing immunity or for therapeutic use.
Assuntos
Vacinas contra a AIDS/imunologia , Coinfecção , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por HIV/imunologia , Imunogenicidade da Vacina/imunologia , Propionibacterium acnes/imunologia , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos , Animais , Proliferação de Células , Citotoxicidade Imunológica , Feminino , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Imunomodulação , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologiaRESUMO
BACKGROUND: Although different studies associated sleep deprivation (SD) with systemic inflammatory changes, the effect of sleep duration on the pathology of allergic chronic diseases is poorly understood. OBJECTIVE: We sought to evaluate the influence of SD on allergen-induced pulmonary inflammation. METHODS: Ovalbumin (OVA)-sensitized C57BL/6 mice were exposed to a first set of intranasal OVA challenge under SD or healthy sleep (HS) conditions, followed by a second OVA challenge, 1 week apart. Some groups were subjected to corticosteroid treatment with dexamethasone. RESULTS: OVA-sensitized mice with SD had more severe airway inflammation than the allergic group with HS. Analysis of lung parenchyma revealed that the inflammation in allergic mice with SD was marked by an influx of neutrophils (mainly) and eosinophils and secretion of IL-6, TNF-α, and IL-17 in contrast to the eosinophilic inflammation and IL-4 production observed in allergic mice with HS. The same cytokine profile was observed in ex vivo culture of cervical lymph node cells and splenocytes, indicating that in allergic mice SD favors immune responses toward a proinflammatory TH17 profile. This idea is supported by the fact that disruption of IL-17 signaling (IL-17 receptor A-/-) prevented airway neutrophilia in allergic mice with SD. Furthermore, allergic mice with SD became refractory to corticosteroid treatment in contrast to the allergic group with HS. CONCLUSION: Collectively, our data show that sleep quality participates in the progression of allergen-induced eosinophilic lung inflammation to corticosteroid-refractory neutrophilic manifestation.
Assuntos
Hipersensibilidade/imunologia , Pneumonia/imunologia , Privação do Sono/imunologia , Células Th17/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Suscetibilidade a Doenças , Feminino , Humanos , Hipersensibilidade/genética , Hipersensibilidade/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Privação do Sono/genética , Privação do Sono/patologia , Células Th17/patologiaRESUMO
Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4+ T cell epitopes (HIVBr8) to the DEC205+ DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4+ and CD8+ T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4+ epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination.
RESUMO
Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations.
Assuntos
Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/classificação , Adjuvantes Imunológicos/história , Animais , História do Século XX , História do Século XXI , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade nas Mucosas , Licenciamento , Receptores Imunológicos/metabolismo , Vacinação , Vacinas de Subunidades Antigênicas/administração & dosagemRESUMO
The development of a preventive vaccine against human immunodeficiency virus (HIV-1) infection is the most efficient method to control the epidemic. The ultimate goal is to develop a vaccine able to induce specific neutralizing, non-neutralizing antibodies and cellular mediated immunity (CMI). Humoral and CMI responses can be directed to glycoproteins that are normally presented as a trimeric spike on the virus surface (gp140). Despite safer, subunit vaccines are normally less immunogenic/effective and need to be delivered together with an adjuvant. The choice of a suitable adjuvant can induce effective humoral and CMI that utterly lead to full protection against disease. In this report, we established a hierarchy of adjuvant potency on humoral and CMI when admixed with the recombinant HIV gp140 trimer. We show that vaccination with gp140 in the presence of different adjuvants can induce high-affinity antibodies, follicular helper T cells and germinal center B cells. The data show that poly (I:C) is the most potent adjuvant to induce specific CMI responses evidenced by IFN-γ production and CD4+/CD8+ T cell proliferation. Furthermore, we demonstrate that combining some adjuvants like MPL plus Alum and MPL plus MDP exert additive effects that impact on the magnitude and quality of humoral responses while mixing MDP with poly (I:C) or with R848 had no impact on total IgG titers but highly impact IgG subclass. In addition, heterologous DNA prime- protein boost yielded higher IgG titers when compare to DNA alone and improved the quality of humoral response when compare to protein immunization as evidenced by IgG1/IgG2a ratio. The results presented in this paper highlight the importance of selecting the correct adjuvant-antigen combination to potentiate desired cells for optimal stimulation.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos B/imunologia , Feminino , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
The development of a highly effective vaccine against the human immunodeficiency virus (HIV) will likely be based on rational vaccine design, since traditional vaccine approaches have failed so far. In recent years, an understanding of what type of immune response is protective against infection and/or disease facilitated vaccine design. T cell-based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. In this context, CD4(+) T cells play a direct cytotoxic role and are also important for the generation and maintenance of functional CD8(+) T and B cell responses. The use of MHC-binding algorithms has allowed the identification of novel CD4(+) T cell epitopes that could be used in vaccine design, the so-called epitope-driven vaccine design. Epitope-based vaccines have the ability to focus the immune response on highly antigenic, conserved epitopes that are fully recognized by the target population. We have recently mapped a set of conserved multiple HLA-DR-binding HIV-1 CD4 epitopes and observed interferon (IFN)-γ-producing CD4(+) T cells when we tested these peptides in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals. We then designed multiepitopic DNA vaccines that induced broad and polyfunctional T cell responses in immunized mice. In this review we will focus on alternative strategies to increase the immunogenicity of an epitope-based vaccine against HIV infection.