Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 192: 107782, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667398

RESUMO

Monitoring of cold-water corals (CWCs) for pathogens and diseases is limited due to the environment, protected nature of the corals and their habitat and as well as the challenging and sampling effort required. It is recognised that environmental factors such as temperature and pH can expedite the ability of pathogens to cause diseases in cold-water corals therefore the characterisation of pathogen diversity, prevalence and associated pathologies is essential. The present study combined histology and polymerase chain reaction (PCR) diagnostic techniques to screen for two significant pathogen groups (bacteria of the genus Vibrio and the protozoan Haplosporidia) in the dominant NE Atlantic deep-water framework corals Lophelia pertusa (13 colonies) and Madrepora oculata (2 colonies) at three sampling locations (canyon head, south branch and the flank) in the Porcupine Bank Canyon (PBC), NE Atlantic. One M. oculata colony and four L. pertusa colonies were collected from both the canyon flank and the south branch whilst five L. pertusa colonies were collected from the canyon head. No pathogens were detected in the M. oculata samples. Neither histology nor PCR detected Vibrio spp. in L. pertusa, although Illumina technology used in this study to profile the CWCs microbiome, detected V. shilonii (0.03%) in a single L. pertusa individual, from the canyon head, that had also been screened in this study. A macroborer was observed at a prevalence of 0.07% at the canyon head only. Rickettsiales-like organisms (RLOs) were visualised with an overall prevalence of 40% and with a low intensity of 1 to 4 (RLO) colonies per individual polyp by histology. L. pertusa from the PBC canyon head had an RLO prevalence of 13.3% with the highest detection of 26.7% recorded in the south branch corals. Similarly, unidentified cells observed in L. pertusa from the south branch (20%) were more common than those observed in L. pertusa from the canyon head (6.7%). No RLOs or unidentified cells were observed in corals from the flank. Mean particulate organic matter concentration is highest in the south branch (2,612 µg l-1) followed by the canyon head (1,065 µg l-1) and lowest at the canyon flank (494 µg l-1). Although the route of pathogen entry and the impact of RLO infection on L. pertusa is unclear, particulate availability and the feeding strategies employed by the scleractinian corals may be influencing their exposure to pathogens. The absence of a pathogen in M. oculata may be attributed to the smaller number of colonies screened or the narrower diet in M. oculata compared to the unrestricted diet exhibited in L. pertusa, if ingestion is a route of entry for pathogen groups. The findings of this study also shed some light on how environmental conditions experienced by deep sea organisms and their life strategies may be limiting pathogen diversity and prevalence.


Assuntos
Antozoários , Animais , Bactérias , Ecossistema , Inquéritos Epidemiológicos , Água
2.
Mar Pollut Bull ; 180: 113764, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635880

RESUMO

Cold-water corals (CWCs) have come under threat from anthropogenic activities such as fishing despite their ecological significance as biodiversity hotspots and as such are being protected in Europe under the EU Habitats Directive with some designated as Special Areas of Conservation (SACs). This study maps the distribution and sources of marine litter in CWC habitats in two SACs on the Irish margin. Data were collected with remotely operated vehicle in the SACs. The density, abundance and composition of litter were assessed, with differences observed between the two sites. The regional morphology influences the distribution of litter in the SACs, with CWC reefs and rock exposures trapping more marine litter. Fishing gear (80.7%) and plastics (55.1%) were commonly found. The observed fisheries-derived litter in the SACs exceed global averages of 10-20% fishing gear, suggesting the SACs appear to offer limited protection to the coral habitats with respect to marine litter.


Assuntos
Antozoários , Animais , Ecossistema , Monitoramento Ambiental/métodos , Plásticos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...