Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(3): 102533, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660300

RESUMO

Social isolation, a risk factor for mortality and various disease states, in mice remains poorly understood, due in part to under-consideration of housing temperature and the murine thermoneutral zone. Here, we present a housing protocol to minimize the confounding effect of chronic cold stress on socially isolated mice that are unable to socially thermoregulate. We describe steps for allocating mice to group housing or social isolation conditions, housing mice in thermoneutral cabinets, feeding mice with high-fat diet, and measuring body weight, food intake, and metabolic indicators. For complete details on the use and execution of this protocol, please refer to Queen et al..1.


Assuntos
Resposta ao Choque Frio , Abrigo para Animais , Camundongos , Animais , Temperatura , Peso Corporal
2.
Mol Ther Methods Clin Dev ; 27: 131-148, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36284766

RESUMO

Individuals with Prader-Willi syndrome (PWS) display developmental delays, cognitive impairment, excessive hunger, obesity, and various behavioral abnormalities. Current PWS treatments are limited to strict supervision of food intake and growth hormone therapy, highlighting the need for new therapeutic strategies. Brain-derived neurotrophic factor (BDNF) functions downstream of hypothalamic feeding circuitry and has roles in energy homeostasis and behavior. In this preclinical study, we assessed the translational potential of hypothalamic adeno-associated virus (AAV)-BDNF gene therapy as a therapeutic for metabolic dysfunction in the Magel2-null mouse model of PWS. To facilitate clinical translation, our BDNF vector included an autoregulatory element allowing for transgene titration in response to the host's physiological needs. Hypothalamic BDNF gene transfer prevented weight gain, decreased fat mass, increased lean mass, and increased relative energy expenditure in female Magel2-null mice. Moreover, BDNF gene therapy improved glucose metabolism, insulin sensitivity, and circulating adipokine levels. Metabolic improvements were maintained through 23 weeks with no adverse behavioral effects, indicating high levels of efficacy and safety. Male Magel2-null mice also responded positively to BDNF gene therapy, displaying improved body composition, insulin sensitivity, and glucose metabolism. Together, these data suggest that regulating hypothalamic BDNF could be effective in the treatment of PWS-related metabolic abnormalities.

3.
Mol Ther Methods Clin Dev ; 20: 409-422, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33575433

RESUMO

Fibroblast growth factor 21 (FGF21) is a peptide hormone that serves as a potent effector of energy homeostasis. Increasingly, FGF21 is viewed as a promising therapeutic agent for type 2 diabetes, fatty liver disease, and other metabolic complications. Exogenous administration of native FGF21 peptide has proved difficult due to unfavorable pharmacokinetic properties. Here, we utilized an engineered serotype adeno-associated viral (AAV) vector coupled with a dual-cassette design to selectively overexpress FGF21 in visceral adipose tissue of insulin-resistant BTBR T+Itpr3tf/J (BTBR) mice. Under high-fat diet conditions, a single, low-dose intraperitoneal injection of AAV-FGF21 resulted in sustained benefits, including improved insulin sensitivity, glycemic processing, and systemic metabolic function and reduced whole-body adiposity, hepatic steatosis, inflammatory cytokines, and adipose tissue macrophage inflammation. Our study highlights the potential of adipose tissue as a FGF21 gene-therapy target and the promise of minimally invasive AAV vectors as therapeutic agents for metabolic diseases.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35355831

RESUMO

Background/Objectives: Environmental enrichment (EE) is a physiological model to investigate brain-fat interactions. We previously discovered that EE activates the hypothalamic-sympathoneural adipocyte (HSA) axis via induction of brain-derived neurotrophic factor (BDNF), thus leading to sympathetic stimulation of white adipose tissue (WAT) and an anti-obesity phenotype. Here, we investigate whether PTEN acts as a downstream mediator of the HSA axis in the EE. Methods: Mice were housed in EE for 4- and 16-week periods to determine how EE regulates adipose PTEN. Hypothalamic injections of adeno-associated viral (AAV) vectors expressing BDNF and a dominant negative form of its receptor were performed to assess the role of the HSA axis in adipose PTEN upregulation. A ß-blocker, propranolol, and a denervation agent, 6-hydroydopamine, were administered to assess sympathetic signaling in the observed EE-PTEN phenotype. To determine whether inducing PTEN is sufficient to reproduce certain EE adipose remodeling, we overexpressed PTEN in WAT using an AAV vector. To determine whether adipose PTEN is necessary for the EE-mediated reduction in adipocyte size, we injected a rAAV vector expressing Cre recombinase to the WAT of adult PTENflox mice and placed the mice in EE. Results: EE upregulated adipose PTEN expression, which was associated with suppression of AKT and ERK phosphorylation, increased hormone-sensitive lipase (HSL) phosphorylation, and reduced adiposity. PTEN regulation was found to be controlled by the HSA axis-with the hypothalamic BDNF acting as the upstream mediator-and dependent on sympathetic innervation. AAV-mediated adipose PTEN overexpression recapitulated EE-mediated adipose changes including suppression of AKT and ERK phosphorylation, increased HSL phosphorylation, and reduced adipose mass, whereas PTEN knockdown blocked the EE-induced reduction of adipocyte size. Conclusions: These data suggest that adipose PTEN responds to environmental stimuli and serves as downstream mediator of WAT remodeling in the EE paradigm, resulting in decreased adipose mass and decreased adipocyte size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA