Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 492, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641029

RESUMO

BACKGROUND: Immune traits are considered to serve as potential biomarkers for pig's health. Medium to high heritabilities have been observed for some of the immune traits suggesting genetic variability of these phenotypes. Consideration of previously established genetic correlations between immune traits can be used to identify pleiotropic genetic markers. Therefore, genome-wide association study (GWAS) approaches are required to explore the joint genetic foundation for health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-trait manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were applied on combinations out of 22 immune traits for Landrace (LR) and Large White (LW) pig lines. RESULTS: In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented in PLINK and a Bayesian linear regression uv approach (BIMBAM) software. Single Nucleotide Polymorphisms (SNPs) that were identified with both uv approaches (n = 32) were mostly associated with immune traits such as haptoglobin, red blood cell characteristics and cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 647 associations for different mv immune trait combinations which were summarized to 133 Quantitative Trait Loci (QTL). SNPs for different trait combinations (n = 66) were detected with more than one mv method. Most of these SNPs are associated with red blood cell related immune trait combinations. Functional annotation of these QTL revealed 453 immune-relevant protein-coding genes. With uv methods shared markers were not observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to unmapped positions for these markers, their functional annotation was not clarified. CONCLUSIONS: This study evaluated the joint genetic background of immune traits in LR and LW piglets through the application of various uv and mv GWAS approaches. In comparison to uv methods, mv methodologies identified more significant associations, which might reflect the pleiotropic background of the immune system more accurately. In genetic research of complex traits, the SNP effects are generally small. Furthermore, one genetic variant can affect several correlated immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed immune-relevant potential candidate genes. Our results indicate that one single test is not able to detect all the different types of genetic effects in the most powerful manner and therefore, the methods should be applied complementary.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Suínos/genética , Animais , Teorema de Bayes , Fenótipo , Eritrócitos
2.
J Anim Breed Genet ; 139(6): 695-709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904167

RESUMO

Improving the immunocompetence towards pathogens represents a desirable objective of breeding strategies to increase resilience. However, the immune system is complex and the genetic foundation of the underlying components is not yet clarified. In the present study, we focused on 22 blood parameters of 1,144 Landrace (LR) and Large White (LW) piglets at the age of 6-7 weeks. The immune profiles covered immune cells, red blood cell characteristics and cytokines. Genetic parameters based on pedigree information along with possible environmental effects were estimated. Litter effects play an important role in the expression of immune parameters of their young progenies. Hence, litter impacts on the piglet's immune profile including the immune parameters of the dam itself were investigated by different models. To incorporate the complexity of the immune network, the data were further investigated with a principal component analysis. Immune traits showed low to high breed-specific heritabilities (h2 ). Strong positive rg were estimated among red blood cell characteristics (0.77-0.99) and among cytokines (0.48-0.99). Neutrophils and lymphocytes illustrated a high negative rg (-0.96 to -0.98). The litter impact on piglet's immunity was examined and strengthened already observed breed differences. In LR, h2 (0.22-0.15) and litter effect (c2 ) (0.52-0.44) for IFN-γ decreased after statistical consideration of maternal impact. In LW, a decrease in h2 (0.32-0.18) for IFN-γ and an increase in c2 (0.54-0.56) were observed. Here, sufficient correlations were detected within various immune traits and functional biological networks of principal components. Most immune traits are heritable and are promising to cover global breed-specific immunocompetence in pigs. The analysis of immune traits has to be extended in order to find an optimal range and to characterize relationships between immunity and performance to gain an improved immune system without accidental losses in productivity.


Assuntos
Citocinas , Animais , Citocinas/genética , Feminino , Tamanho da Ninhada de Vivíparos/genética , Fenótipo , Gravidez , Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...