Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 371: 101-110, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782065

RESUMO

Vaginal drug delivery is often preferred over systemic delivery to reduce side effects and increase efficacy in treating diseases and conditions of the female reproductive tract (FRT). Current vaginal products have drawbacks, including spontaneous ejection of drug-eluting rings and unpleasant discharge from vaginal creams. Here, we describe the development and characterization of a hypotonic, gel-forming, Pluronic-based delivery system for vaginal drug administration. The rheological properties were characterized with and without common hydrogel polymers to demonstrate the versatility. Both qualitative and quantitative approaches were used to determine the Pluronic F127 concentration below the critical gel concentration (CGC) that was sufficient to achieve gelation when formulated to be hypotonic to the mouse vagina. The hypotonic, gel-forming formulation was found to form a thin, uniform gel layer along the vaginal epithelium in mice, in contrast to the rapidly forming conventional gelling formulation containing polymer above the CGC. When the hypotonic, gel-forming vehicle was formulated in combination with a progesterone nanosuspension (ProGel), equivalent efficacy was observed in the prevention of chemically-induced preterm birth (PTB) compared to commercial Crinone® vaginal cream. Further, ProGel showed marked benefits in reducing unpleasant discharge, reducing product-related toxicity, and improving compatibility with vaginal bacteria in vitro. A hypotonic, gel-forming delivery system may be a viable option for therapeutic delivery to the FRT.

2.
J Control Release ; 367: 708-736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295996

RESUMO

Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.


Assuntos
Degeneração Macular , Doenças Neurodegenerativas , Humanos , Sistemas de Liberação de Medicamentos , Doenças Neurodegenerativas/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Preparações Farmacêuticas , Administração Tópica
3.
J Control Release ; 362: 371-380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657693

RESUMO

Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.

4.
Nat Commun ; 14(1): 2509, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130851

RESUMO

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Assuntos
Sistemas de Liberação de Medicamentos , Melaninas , Animais , Coelhos , Tartarato de Brimonidina , Peptídeos , Aprendizado de Máquina
5.
Biochemistry ; 61(11): 956-962, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506879

RESUMO

Proteins of the HD-domain superfamily employ a conserved histidine-aspartate (HD) dyad to coordinate diverse metallocofactors. While most known HD-domain proteins are phosphohydrolases, new additions to this superfamily have emerged such as oxygenases and lyases, expanding their functional repertoire. To date, three HD-domain oxygenases have been identified, all of which employ a mixed-valent FeIIFeIII cofactor to activate their substrates and utilize molecular oxygen to afford cleavage of C-C or C-P bonds via a diferric superoxo intermediate. Phylogenetic analysis reveals an uncharacterized multidomain protein in the pathogenic soil fungus Fonsecaea multimorphosa, herein designated PhoF. PhoF consists of an N-terminal FeII/α-ketoglutarate-dependent domain resembling that of PhnY and a C-terminal HD-domain like that of PhnZ. PhnY and PhnZ are part of an organophosphonate degradation pathway in which PhnY hydroxylates 2-aminoethylphosphonic acid, and PhnZ cleaves the C-P bond of the hydroxylated product yielding phosphate and glycine. Employing electron paramagnetic resonance and Mössbauer spectroscopies in tandem with activity assays, we determined that PhoF carries out the O2-dependent degradation of two aminophosphonates, demonstrating an expanded catalytic efficiency with respect to the individual, but mechanistically coupled PhnY and PhnZ. Our results recognize PhoF as a new example of an HD-domain oxygenase and show that domain fusion of an organophosphonate degradation pathway may be a strategy for disease-causing fungi to acquire increased functional versatility, potentially important for their survival.


Assuntos
Organofosfonatos , Oxigenases , Compostos Férricos , Fungos/metabolismo , Organofosfonatos/metabolismo , Oxigênio , Oxigenases/química , Filogenia
6.
Drug Deliv Transl Res ; 12(4): 826-837, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33900546

RESUMO

While eye drops are the most common ocular dosage form, eye drops for treating diseases of the posterior segment (retina, choroid, optic nerve) have yet to be developed. In glaucoma, eye drops are used extensively for delivering intraocular pressure (IOP)-lowering medications to the anterior segment. However, degeneration of retinal ganglion cells (RGCs) in the retina may progress despite significant IOP lowering, suggesting that a complementary neuroprotective therapy would improve glaucoma management. Here, we describe a hypotonic, thermosensitive gel-forming eye drop for effective delivery of sunitinib, a protein kinase inhibitor with activity against the neuroprotective targets dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK), to enhance survival of RGCs after optic nerve injury. Further, binding of sunitinib to melanin in the pigmented cells in the choroid and retinal pigment epithelium (RPE) led to prolonged intraocular residence time, including therapeutically relevant concentrations in the non-pigmented retinal tissue where the RGCs reside. The combination of enhanced intraocular absorption provided by the gel-forming eye drop vehicle and the intrinsic melanin binding properties of sunitinib led to significant protection of RGCs with only once weekly eye drop dosing. For a chronic disease such as glaucoma, an effective once weekly eye drop for neuroprotection could result in greater patient adherence, and thus, greater disease management and improved patient quality of life.


Assuntos
Glaucoma , Melaninas , Animais , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Humanos , Pressão Intraocular , Melaninas/metabolismo , Soluções Oftálmicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Qualidade de Vida , Células Ganglionares da Retina/metabolismo , Sunitinibe/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico
7.
Bioeng Transl Med ; 6(3): e10238, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589607

RESUMO

There are numerous barriers to achieving effective intraocular drug administration, including the mucus layer protecting the ocular surface. For this reason, antibiotic eye drops must be used multiple times per day to prevent and treat ocular infections. Frequent eye drop use is inconvenient for patients, and lack of adherence to prescribed dosing regimens limits treatment efficacy and contributes to antibiotic resistance. Here, we describe an ion-pairing approach used to create an insoluble moxifloxacin-pamoate (MOX-PAM) complex for formulation into mucus-penetrating nanosuspension eye drops (MOX-PAM NS). The MOX-PAM NS provided a significant increase in ocular drug absorption, as measured by the area under the curve in cornea tissue and aqueous humor, compared to Vigamox in healthy rats. Prophylactic and treatment efficacy were evaluated in a rat model of ocular Staphylococcus aureus infection. A single drop of MOX-PAM NS was more effective than Vigamox, and completely prevented infection. Once a day dosing with MOX-PAM NS was similar, if not more effective, than three times a day dosing with Vigamox for treating S. aureus infection. The MOX-PAM NS provided increased intraocular antibiotic absorption and improved prevention and treatment of ocular keratitis, and the formulation approach is highly translational and clinically relevant.

8.
Pharmaceutics ; 13(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062883

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is one of the major risk factors for glaucoma onset and progression, and available pharmaceutical interventions are exclusively targeted at IOP lowering. However, degeneration of retinal ganglion cells (RGCs) may continue to progress despite extensive lowering of IOP. A complementary strategy to IOP reduction is the use of neuroprotective agents that interrupt the process of cell death by mechanisms independent of IOP. Here, we describe an ion complexation approach for formulating microcrystals containing ~50% loading of a protein kinase inhibitor, sunitinib, to enhance survival of RGCs with subconjunctival injection. A single subconjunctival injection of sunitinib-pamoate complex (SPC) microcrystals provided 20 weeks of sustained retina drug levels, leading to neuroprotection in a rat model of optic nerve injury. Furthermore, subconjunctival injection of SPC microcrystals also led to therapeutic effects in a rat model of corneal neovascularization. Importantly, therapeutically relevant retina drug concentrations were achieved with subconjunctival injection of SPC microcrystals in pigs. For a chronic disease such as glaucoma, a formulation that provides sustained therapeutic effects to complement IOP lowering therapies could provide improved disease management and promote patient quality of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...