Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 471: 115118, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906480

RESUMO

Alcohol-associated social facilitation together with attenuated sensitivity to adverse alcohol effects play a substantial role in adolescent alcohol use and misuse, with adolescent females being more susceptible to adverse consequences of binge drinking than adolescent males. Adolescent rodents also demonstrate individual and sex differences in sensitivity to ethanol-induced social facilitation and social inhibition, therefore the current study was designed to identify neuronal activation patterns associated with ethanol-induced social facilitation and ethanol-induced social inhibition in male and female adolescent cFos-LacZ rats. Experimental subjects were given social interaction tests on postnatal day (P) 34, 36, and 38 after an acute challenge with 0, 0.5 and 0.75 g/kg ethanol, respectively, and ß-galactosidase (ß-gal) expression was assessed in brain tissue of subjects socially facilitated and socially inhibited by 0.75 g/kg ethanol. In females, positive correlations were evident between overall social activity and neuronal activation of seven out of 13 ROIs, including the prefrontal cortex and nucleus accumbens, with negative correlations evident in males. Assessments of neuronal activation patterns revealed drastic sex differences between ethanol responding phenotypes. In socially inhibited males, strong correlations were evident among almost all ROIs (90 %), with markedly fewer correlations among ROIs (38 %) seen in socially facilitated males. In contrast, interconnectivity in females inhibited by ethanol was only 10 % compared to nearly 60 % in facilitated subjects. However, hub analyses revealed convergence of brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects. Taken together, these findings demonstrate individual and sex-related differences in responsiveness to acute ethanol in adolescent rats, with sex differences more evident in socially inhibited by ethanol adolescents than their socially facilitated counterparts.

2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559141

RESUMO

Motives related to the enhancement of the positive effects of alcohol on social activity within sexes are strongly associated with alcohol use disorder and are a major contributor to adolescent alcohol use and heavy drinking. This is particularly concerning given that heightened vulnerability of the developing adolescent brain. Despite this linkage, it is unknown how adolescent non-intoxicated social behavior relates to alcohol's effects on social responding, and how the social brain network differs in response within individuals that are socially facilitated or inhibited by alcohol. Sex effects for social facilitation and inhibition during adolescence are conserved in rodents in high and low drinkers, respectively. In the current study we used cFos-LacZ transgenic rats to evaluate behavior and related neural activity in male and female subjects that differed in their social facilitatory or social inhibitory response to ethanol. Subjects were assessed using social interaction on postnatal days 34, 36 and 38 after a 0, 0.5 and 0.75 g/kg ethanol challenge, respectively, with brain tissue being evaluated following the final social interaction. Subjects were binned into those that were socially facilitated or inhibited by ethanol using a tertile split within each sex. Results indicate that both males and females facilitated by ethanol display lower social activity in the absence of ethanol compared to socially inhibited subjects. Analyses of neural activity revealed that females exhibited differences in 54% of examined socially relevant brain regions of interest (ROIs) compared to only 8% in males, with neural activity in females socially inhibited by ethanol generally being lower than facilitated subjects. Analysis of socially relevant ROI neural activity to social behavior differed for select brain regions as a function of sex, with the prefrontal cortex and nucleus accumbens being negatively correlated in males, but positively correlated in females. Females displayed additional positive correlations in other ROIs, and sex differences were noted across the rostro-caudal claustrum axis. Importantly, neural activity largely did not correlate with locomotor activity. Functional network construction of social brain regions revealed further sex dissociable effects, with 90% interconnectivity in males socially inhibited by ethanol compared to 38% of facilitated subjects, whereas interconnectivity in females inhibited by ethanol was 10% compared to nearly 60% in facilitated subjects. However, hub analyses converged on similar brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects, whereas the central amygdala was disconnected in facilitated subjects. Taken together, these findings support unified brain regions that contribute to social facilitation or inhibition from ethanol despite prominent sex differences in the social brain network.

3.
Front Pharmacol ; 13: 841657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401161

RESUMO

Adolescence is a sensitive developmental period during which alcohol use is often initiated and consumed in high quantities, often at binge or even high-intensity drinking levels. Our lab has repeatedly found that adolescent intermittent ethanol (AIE) exposure in rats results in long-lasting social impairments, specifically in males, however our knowledge of the neuronal underpinnings to this sex-specific effect of AIE is limited. The present study was designed to test whether social anxiety-like alterations in AIE-exposed males would be accompanied by alterations of neuronal activation across brain regions associated with social behavior, with AIE females demonstrating no social impairments and alterations in neuronal activation. Adolescent male and female cFos-LacZ transgenic rats on a Sprague-Dawley background were exposed to ethanol (4 g/kg, 25% v/v) or water via intragastric gavage every other day during postnatal days (P) 25-45 for a total of 11 exposures (n = 13 per group). Social behavior of adult rats was assessed on P70 using a modified social interaction test, and neuronal activation in brain regions implicated in social responding was assessed via ß-galactosidase (ß-gal) expression. We found that AIE exposure in males resulted in a significantly lower social preference coefficient relative to water-exposed controls, with no effect evident in females. Exposure-specific relationships between social behavior and neuronal activation were identified, with AIE eliminating correlations found in water controls related to social interaction, and eliciting negative correlations mainly in limbic regions in a sex-specific manner. AIE exposure in the absence of social testing was also found to differentially affect neural activity in the orbitofrontal cortex and central amygdala in males and females. These data suggest that AIE produces sex-specific social impairments that are potentially driven by differential neuronal activation states in regions important for social behavior, including the medial prefrontal and orbitofrontal cortices, nucleus accumbens, lateral septum, and central amygdala. Future studies should be focused on identification of specific neuronal phenotypes activated by interaction with a social partner in AIE-exposed subjects and their control counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...