Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioelectron Med ; 10(1): 15, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880906

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS: We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS: Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION: Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.

2.
J Neural Eng ; 21(2)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38479016

RESUMO

Objective.In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimulation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects.Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve (VN) innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate (HR), making it an ideal candidate for demonstrating the effectiveness of our approach.Main results.The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to VN stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target HRs and optimizing neural B-fiber activations despite high intersubject variability.Significance.An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing.


Assuntos
Estimulação do Nervo Vago , Humanos , Animais , Suínos , Estimulação do Nervo Vago/métodos , Teorema de Bayes , Nervo Vago/fisiologia , Coração , Fibras Nervosas Mielinizadas
3.
Phys Med Biol ; 51(14): 3405-18, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16825739

RESUMO

This paper describes an electrical model of cardiac ventricles incorporating real geometry and motion. The heart anatomy and its motion through the cardiac cycle are obtained from segmentations of multiple-slice MRI time sequences; the special conduction system is constructed using an automated mapping procedure from an existing static heart model. The heart model is mounted in an anatomically realistic voxel model of the human body. The cardiac electrical source and surface potentials are determined numerically using both a finite-difference scheme and a boundary-element method with the incorporation of the motion of the heart. The electrocardiograms (ECG) and body surface potential maps are calculated and compared to the static simulation in the resting heart. The simulations demonstrate that introducing motion into the cardiac model modifies the ECG signals, with the most obvious change occurring during the T-wave at peak contraction of the ventricles. Body surface potential maps differ in some local positions during the T-wave, which may be of importance to a number of cardiac models, including those incorporating inverse methods.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Eletrocardiografia/métodos , Coração/fisiologia , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Algoritmos , Simulação por Computador , Eletrofisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Modelos Estatísticos , Movimento
4.
IEEE Trans Pattern Anal Mach Intell ; 28(1): 106-18, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16402623

RESUMO

In this paper, we address the computation of globally minimal curves and surfaces for image segmentation and stereo reconstruction. We present a solution, simulating a continuous maximal flow by a novel system of partial differential equations. Existing methods are either grid-biased (graph-based methods) or suboptimal (active contours and surfaces). The solution simulates the flow of an ideal fluid with isotropic velocity constraints. Velocity constraints are defined by a metric derived from image data. An auxiliary potential function is introduced to create a system of partial differential equations. It is proven that the algorithm produces a globally maximal continuous flow at convergence, and that the globally minimal surface may be obtained trivially from the auxiliary potential. The bias of minimal surface methods toward small objects is also addressed. An efficient implementation is given for the flow simulation. The globally minimal surface algorithm is applied to segmentation in 2D and 3D as well as to stereo matching. Results in 2D agree with an existing minimal contour algorithm for planar images. Results in 3D segmentation and stereo matching demonstrate that the new algorithm is robust and free from grid bias.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Fotogrametria/métodos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
IEEE Trans Pattern Anal Mach Intell ; 27(12): 1923-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16355660

RESUMO

Single shortest path extraction algorithms have been used in a number of areas such as network flow and image analysis. In image analysis, shortest path techniques can be used for object boundary detection, crack detection, or stereo disparity estimation. Sometimes one needs to find multiple paths as opposed to a single path in a network or an image where the paths must satisfy certain constraints. In this paper, we propose a new algorithm to extract multiple paths simultaneously within an image using a constrained expanded trellis (CET) for feature extraction and object segmentation. We also give a number of application examples for our multiple paths extraction algorithm.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Imageamento Tridimensional/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-17282184

RESUMO

This paper describes an electrical model of the ventricles incorporating real geometry and motion. Cardiac geometry and motion is obtained from segmentations of multiple-slice MRI time sequences. A static heart model developed previously is deformed to match the observed geometry using a novel shape registration algorithm. The resulting electrocardiograms and body surface potential maps are compared to a static simulation in the resting heart. These results demonstrate that introducing motion into the cardiac model modifies the ECG during the T wave at peak contraction of the ventricles.

7.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 1607-10, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17282514

RESUMO

In this paper we present an algorithm as the combination of a low level morphological operation and model based global circular shortest path scheme to explore the segmentation of the right ventricle. Traditional morphological operations were employed to obtain the region of interest, and adjust it to generate a mask. The image cropped by the mask is then partitioned into a few overlapping regions. Global circular shortest path algorithm is then applied to extract the contour from each partition. The final step is to re-assemble the partitions to create the whole contour. The technique is deemed quite reliable and robust, as this is illustrated by a very good agreement between the extracted contour and the expert manual drawing output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...