Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(24): 247001, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776485

RESUMO

The pair breaking potential of individual magnetic impurities in s-wave superconductors generates localized states inside the superconducting gap commonly referred to as Yu-Shiba-Rusinov (YSR) states whose isolated nature makes them promising building blocks for artificial structures that may host Majorana fermions. One of the challenges in this endeavor is to understand their intrinsic lifetime, ℏ/Λ, which is expected to be limited by the inelastic coupling with the continuum thus leading to decoherence. Here we use shot-noise scanning tunneling microscopy to reveal that electron tunneling into superconducting 2H-NbSe_{2} mediated by YSR states is not Poissonian, but ordered as a function of time, as evidenced by a reduction of the noise. Moreover, our data show the concomitant transfer of charges e and 2e, indicating that incoherent single particle and coherent Andreev processes operate simultaneously. From the quantitative agreement between experiment and theory we obtain Λ=1 µeV≪k_{B}T demonstrating that shot noise can probe energy scales and timescales inaccessible by conventional spectroscopy whose resolution is thermally limited.

2.
Nat Commun ; 11(1): 4336, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859913

RESUMO

In ferromagnetic materials, spin up and down electrons can carry different heat currents. This spin-dependent energy excitation mode ('spin energy mode') occurs only when spin up and down energy distribution functions are different. In superconductors, heat is carried by quasiparticle excitations and the spin energy mode can be excited by spin-polarised current injection. In the presence of a finite Zeeman magnetic field, the spin energy mode surprisingly leads to a charge imbalance (different numbers of hole- and electron-like quasiparticles) at the superconducting gap edge. By performing spin-resolved spectroscopy of the out-of-equilibrium quasiparticle populations in a mescoscopic superconductor, we reveal that their distribution functions are non-Fermi-Dirac. In addition, our spectroscopic technique allows us to observe a charge imbalance, localised in energy to the gap edge and thus unambiguously identify the spin energy mode. Our results agree well with theory and shed light on energy transport in superconducting spintronics.

3.
Science ; 367(6473): 68-71, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896712

RESUMO

Single-atom manipulation within doped correlated electron systems could help disentangle the influence of dopants, structural defects, and crystallographic characteristics on local electronic states. Unfortunately, the high diffusion barrier in these materials prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high-temperature superconductor Bi2Sr2CaCu2O8+x using the local electric field of the tip of a scanning tunneling microscope. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 milli-electron volts (on average ~5% of the total gap size). Our toy model, which captures all observed characteristics, suggests that the electric field induces lateral movement of local pairing potentials in the CuO2 plane.

4.
Nat Commun ; 10(1): 1618, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944326

RESUMO

The original version of this Article contained an error in the right-hand y-axis of Fig. 2c, which incorrectly read 'S/2e (pA)'. The correct version states 'nA' in place of 'pA'. This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 10(1): 544, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710086

RESUMO

Dopants and impurities are crucial in shaping the ground state of host materials: semiconducting technology is based on their ability to donate or trap electrons, and they can even be used to transform insulators into high temperature superconductors. Due to limited time resolution, most atomic-scale studies of the latter materials focussed on the effect of dopants on the electronic properties averaged over time. Here, by using atomic-scale current-noise measurements in optimally doped Bi2Sr2CaCu2O8+x, we visualize sub-nanometre sized objects where the tunnelling current-noise is enhanced by at least an order of magnitude. We show that these objects are previously undetected oxygen dopants whose ionization and local environment leads to unconventional charge dynamics resulting in correlated tunnelling events. The ionization of these dopants opens up new routes to dynamically control doping at the atomic scale, enabling the direct visualization of local charging on e.g. high-Tc superconductivity.

6.
Rev Sci Instrum ; 89(9): 093708, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278734

RESUMO

By implementing dedicated cryogenic circuitry operating in the MHz regime, we have developed a scanning tunneling microscope (STM) capable of conventional, low frequency (<10 kHz), microscopy as well spectroscopy and shot-noise detection at 1 MHz. After calibrating our AC circuit on a gold surface, we illustrate our capability to detect shot-noise at the atomic scale and at low currents (<1 nA) by simultaneously measuring the atomically resolved differential conductance and shot-noise on the high temperature superconductor Bi2Sr2CaCu2O8+x . We further show our direct sensitivity to the temperature of the tunneling electrons at low voltages. Our MHz circuitry opens up the possibility to study charge and correlation effects at the atomic scale in all materials accessible to STM.

7.
Philos Trans A Math Phys Eng Sci ; 376(2125)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29941629

RESUMO

The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'.

8.
Nat Commun ; 9(1): 598, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426840

RESUMO

Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

9.
Nat Commun ; 6: 8660, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26497744

RESUMO

Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

10.
Phys Rev Lett ; 107(1): 017001, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797564

RESUMO

An extended Josephson junction can be described as a microwave cavity coupled to a Josephson oscillator. This is formally equivalent to a Fabry-Perot cavity with a freely vibrating mirror, where it has been shown that radiation pressure from photons in the cavity can reduce (increase) the vibrations of the mirror, effectively cooling (heating) it. We demonstrate that, similarly, the superconducting phase difference across a Josephson junction-the Josephson phase-can be "cooled" or "heated" by microwave excitation of the junction and that both these effects increase with microwave power.

11.
Phys Rev Lett ; 103(17): 177002, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19905779

RESUMO

We use microwave excitation to elucidate the dynamics of long superconductor-normal metal-superconductor Josephson junctions. By varying the excitation frequency in the range 10 MHz-40 GHz, we observe that the critical and retrapping currents, deduced from the dc voltage versus dc current characteristics of the junction, are set by two different time scales. The critical current increases when the ac frequency is larger than the inverse diffusion time in the normal metal, whereas the retrapping current is strongly modified when the excitation frequency is above the electron-phonon rate in the normal metal. Therefore the critical and retrapping currents are associated with elastic and inelastic scattering, respectively.

12.
Phys Rev Lett ; 102(15): 157003, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518669

RESUMO

We have investigated the classical phase dynamics of underdamped ferromagnetic Josephson junctions by measuring the switching probability in both the stationary and nonstationary regimes down to 350 mK. We found the escape temperature to be the bath temperature, with no evidence of additional spin noise. In the nonstationary regime, we have performed a pump-probe experiment on the Josephson phase by increasing the frequency of the junction current bias. We show that an incomplete energy relaxation leads to dynamical phase bifurcation. Bifurcation manifests itself as premature switching, resulting in a bimodal switching distribution. We directly measure the phase relaxation time tau_{phi} by following the evolution of the bimodal switching distribution when varying the bias frequency. Numerical simulations account for the experimental values of tau_{phi}.

13.
Phys Rev Lett ; 94(19): 197003, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090200

RESUMO

The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson junctions shows a spontaneous half quantum vortex, sustained by a supercurrent of undetermined sign. This supercurrent flows in the electrode of a Josephson junction used as a detector and produces a phi(0)/4 shift in its magnetic diffraction pattern. We have measured the statistics of the positive or the negative sign shift occurring at the superconducting transition of such a junction. The randomness of the shift sign, the reproducibility of its magnitude, and the possibility of achieving exact flux compensation upon field cooling are the features which show that 0-pi junctions behave as classical spins, just as magnetic nanoparticles with uniaxial anisotropy.

14.
Phys Rev Lett ; 93(13): 137001, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15524751

RESUMO

The exchange-enhanced electron-electron interactions at the paramagnetic-ferromagnetic transition were studied experimentally via proximity effect tunneling spectroscopy. By solving the Usadel equations in both the paramagnetic and ferromagnetic states, the electron-spin fluctuation coupling constant and the exchange field are derived from the tunneling spectra.

15.
Phys Rev Lett ; 92(21): 217001, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15245309

RESUMO

We present magnetization measurements of mesoscopic superconducting niobium loops containing a ferromagnetic (PdNi) pi junction. The loops are prepared on top of the active area of a micro-Hall sensor based on high mobility GaAs/AlGaAs heterostructures. We observe asymmetric switching of the loop between different magnetization states when reversing the sweep direction of the magnetic field. This provides evidence for a spontaneous current induced by the intrinsic phase shift of the pi junction. In addition, the presence of the spontaneous current near zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.

16.
Phys Rev Lett ; 90(16): 167001, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12731993

RESUMO

We have measured the ground state of ferromagnetic Josephson junctions using a single dc SQUID (superconducting quantum interference device).We show that the Josephson coupling is either positive (0 coupling) or negative (pi coupling) depending on the ferromagnetic layer thickness. As expected, the sign change of the Josephson coupling is observed as a shift of half a quantum flux in the SQUID diffraction pattern when operating in the linear limit.

17.
Phys Rev Lett ; 89(13): 137007, 2002 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-12225057

RESUMO

We investigate Josephson coupling through a ferromagnetic thin film using superconductor-insulator-ferromagnet-superconductor planar junctions. Damped oscillations of the critical current are observed as a function of the ferromagnetic layer thickness. We show that they result from the exchange energy gained or lost by a quasiparticle Andreev-reflected at the ferromagnet-superconductor interface. The critical current cancels out at the transition from positive ("0") to negative ("pi") coupling, in agreement with theoretical calculations.

18.
Phys Rev Lett ; 86(2): 304-7, 2001 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11177817

RESUMO

Planar tunneling spectroscopy reveals damped oscillations of the superconducting order parameter induced into a ferromagnetic thin film by the proximity effect. The oscillations are due to the finite momentum transfer provided for Cooper pairs by the splitting of the spin-up and spin-down bands in the ferromagnet. As a consequence, for negative values of the superconducting order parameter the tunneling spectra are capsized ("pi state"). The oscillations' damping and period are set by the same length scale, which depends on the spin polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...