Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 137(2): 593-605, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16257491

RESUMO

Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of sleep deprivation on the expression of immediate early gene and heat shock protein mRNAs previously shown to be upregulated in the mouse brain in sleep deprivation and in recovery sleep after sleep deprivation. We find that the molecular response to sleep deprivation and recovery sleep in the brain is highly conserved between these two mammalian species, at least in terms of expression of immediate early gene and heat shock protein family members. Using Affymetrix Neurobiology U34 GeneChips , we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by sleep deprivation or recovery sleep. We find that the response of the basal forebrain to sleep deprivation is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes Precoces/genética , Proteínas de Choque Térmico/genética , Privação do Sono/genética , Sono/fisiologia , Potenciais de Ação/genética , Animais , Núcleo Basal de Meynert/anatomia & histologia , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiopatologia , Encéfalo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Hipotálamo/anatomia & histologia , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/genética , Privação do Sono/metabolismo , Especificidade da Espécie
2.
Neuroscience ; 116(1): 187-200, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12535952

RESUMO

Although sleep is thought to be restorative from prior wakeful activities, it is not clear what is being restored. To determine whether the synthesis of macromolecules is increased in the cerebral cortex during sleep, we subjected C57BL/6 mice to 6 hours of sleep deprivation and then screened the expression of 1176 genes of known function by using cDNA arrays. The expression of the heat shock proteins (HSP), endoplasmic reticulum protein (ERp72) and glucose-regulated protein (GRp78), was among the genes whose expression was significantly elevated in the cortex during sleep deprivation, whereas GRp78 and GRp94 mRNAs were elevated in the cortex during recovery sleep after sleep deprivation, as confirmed by conventional and quantitative real-time polymerase chain reaction and/or Northern analyses. A systematic evaluation of the expression of six heat shock protein family members (ERP72, GRp78, GRp94, HSP27, HSP70-1, and HSP84) in seven brain regions revealed increased mRNA levels in cortex, basal forebrain, hypothalamus, cerebellum and medulla during sleep deprivation, whereas increased mRNA levels during recovery sleep were limited to the cortex and medulla. Immunohistochemical studies identified increased numbers of GRp78-, GRp94-, and ERp72-immunoreactive cells in the dorsal and lateral cortex during sleep deprivation but, during recovery sleep, elevated numbers of these cells were found only in the lateral cortex. In the medulla, increased numbers of GRp94-immunoreactive cells were observed in nucleus tractus solitarius, dorsal motor nucleus of the vagus and the rostroventrolateral medulla during recovery sleep. The widespread increase of heat shock protein family mRNAs in brain during sleep deprivation may be a neuroprotective response to prolonged wakefulness. In contrast, the relatively limited heat shock protein family mRNA expression during recovery sleep may be related to the role of heat shock proteins in protein biogenesis and thus to the restorative function of sleep.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Privação do Sono/metabolismo , Sono , Animais , Northern Blotting , Chaperona BiP do Retículo Endoplasmático , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Gene ; 291(1-2): 203-10, 2002 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-12095693

RESUMO

Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme that inactivates a family of fatty acid amide molecules which are implicated in physiological processes such as pain and sleep. We cloned a 1.9 kb fragment of the 5'-untranslated region of the mouse FAAH gene into the pGL3 basic luciferase reporter vector and showed that this sequence has promoter activity in vitro. By primer extension analysis, we have determined the transcription start site to be 200 bases upstream of the ATG initiation codon and found that a TATA motif was absent. A number of putative response elements, including those for estrogen and glucocorticoids, were identified in this sequence. We have demonstrated that the estrogen and glucocorticoid receptors down-regulate transcriptional activity independent of their ligand. These data should help in understanding the mechanisms of FAAH gene transcription.


Assuntos
Amidoidrolases/genética , Região 5'-Flanqueadora/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Células CHO , Células COS , Cricetinae , DNA/química , DNA/genética , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Glucocorticoides/farmacologia , Humanos , Luciferases/efeitos dos fármacos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas
4.
Gene ; 262(1-2): 123-8, 2001 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-11179675

RESUMO

Hypocretins 1 and 2 (also called orexins A and B, respectively) are hypothalamic neuropeptides that have recently been shown to be involved in the sleep disorder narcolepsy and possibly in the normal regulation of sleep and wake functions. These two peptides are derived from a single precursor molecule called prepro-hypocretin, also known as prepro-orexin. We have cloned a 450 bp fragment from the 5'-flanking region of the human prepro-hypocretin gene and demonstrated that this fragment has promoter activity in vitro. Deletions at the 5' end from -450 to -188 reduced the promoter activity by approximately 50%. Further deletion from the 5'-end to -69 almost completely abolished promoter activity. The 450 bp fragment contains a number of potential transcription factor binding sites, including an interferon (IFN) response element. Our studies demonstrate that alpha-IFN strongly inhibits the promoter activity of both 450 and 188 bp fragments in a dose-dependent manner. The inhibitory effect of alpha-IFN is consistent with recent studies which suggest that hypocretin 1/orexin A may be involved in modulating arousal states and with the literature indicating involvement of immune-related molecules in sleep regulation.


Assuntos
Interferon-alfa/metabolismo , Neuropeptídeos/genética , Precursores de Proteínas/genética , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Genes Reporter , Humanos , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Luciferases/genética , Dados de Sequência Molecular , Neuropeptídeos/metabolismo , Orexinas , Regiões Promotoras Genéticas , Precursores de Proteínas/metabolismo , Elementos de Resposta , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...