Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33411696

RESUMO

Reestablishing an appropriate balance between T effector cells (Teff) and Tregs is essential for correcting autoimmunity. Multiple sclerosis (MS) is an immune-mediated chronic CNS disease characterized by neuroinflammation, demyelination, and neuronal degeneration, in which the Teff:Treg balance is skewed toward pathogenic Teffs Th1 and Th17 cells. STAT3 is a key regulator of Teff:Treg balance. Using the structure-based design, we have developed a potentially novel small-molecule prodrug LLL12b that specifically inhibits STAT3 and suppresses Th17 differentiation and expansion. Moreover, LLL12b regulates the fate decision between Th17 and Tregs in an inflammatory environment, shifting Th17:Treg balance toward Tregs and favoring the resolution of inflammation. Therapeutic administration of LLL12b after disease onset significantly suppresses disease progression in adoptively transferred, chronic, and relapsing-remitting experimental autoimmune encephalomyelitis. Disease relapses were also significantly suppressed by LLL12b given during the remission phase. Additionally, LLL12b shifts Th17:Treg balance of CD4+ T cells from MS patients toward Tregs and increases Teff sensitivity to Treg-mediated suppression. These data suggest that selective inhibition of STAT3 by the small molecule LLL12b recalibrates the effector and regulatory arms of CD4+ T responses, representing a potentially clinically translatable therapeutic strategy for MS.


Assuntos
Autoimunidade , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Fator de Transcrição STAT3/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Antraquinonas/farmacologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/imunologia
2.
J Neuroimmunol ; 325: 20-28, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366205

RESUMO

B lymphocyte-induced maturation protein (Blimp-1) is a transcription factor that regulates effector/memory B cells and CD8 T cells. Here we show that Blimp-1 is expressed in both Th1 and Th17 cells in vitro and highly expressed in effector/memory myelin-specific CD4 T cells in experimental autoimmune encephalomyelitis (EAE) mice. The immunized Blimp-1 conditional knockout mice have a significantly delayed disease onset but enhanced disease severity during the effector phase compared to their wild-type littermates, suggesting that Blimp-1 is a unique transcription factor with distinct roles in the regulation of myelin-specific CD4 T cells during priming and effector phase of EAE.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
3.
Front Physiol ; 8: 236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491039

RESUMO

Daily moderate exercise (DME) and stress management are underemphasized in the care of patients with lupus nephritis (LN) due to a poor comprehensive understanding of their potential roles in controlling the inflammatory response. To investigate these effects on murine LN, disease progression was monitored with either DME or social disruption stress (SDR) induction in NZM2410/J mice, which spontaneously develop severe, early-onset LN. SDR of previously established social hierarchies was performed daily for 6 days and DME consisted of treadmill walking (8.5 m/min for 45 min/day). SDR significantly enhanced kidney disease when compared to age-matched, randomly selected control counterparts, as measured by histopathological analysis of H&E staining and immunohistochemistry for complement component 3 (C3) and IgG complex deposition. Conversely, while 88% of non-exercised mice displayed significant renal damage by 43 weeks of age, this was reduced to 45% with exercise. DME also reduced histopathology in kidney tissue and significantly decreased deposits of C3 and IgG complexes. Further examination of renal infiltrates revealed a macrophage-mediated inflammatory response that was significantly induced with SDR and suppressed with DME, which also correlated with expression of inflammatory mediators. Specifically, SDR induced IL-6, TNF-α, IL-1ß, and MCP-1, while DME suppressed IL-6, TNF-α, IL-10, CXCL1, and anti-dsDNA autoantibodies. These data demonstrate that psychological stressors and DME have significant, but opposing effects on the chronic inflammation associated with LN; thus identifying and characterizing stress reduction and a daily regimen of physical activity as potential adjunct therapies to complement pharmacological intervention in the management of autoimmune disorders, including LN.

4.
J Neuroinflammation ; 13(1): 302, 2016 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912762

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by inflammation, demyelination, and neuronal degeneration, where myelin-specific CD4 T cells play critical roles in the formation of acute MS lesions and disease progression. The suppression of IL-7Rα expression and the upregulation of inhibitory receptors (PD-1, etc.) are essential parts of the cell-intrinsic immunosuppressive program regulating T effector functions to prevent autoimmunity. However, little is known on the factors regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T effector/memory cells during the development of CNS autoimmunity. METHODS: We analyzed the roles of the transcription factor T-bet in regulating the expression of IL-7Rα and inhibitory receptors in myelin-specific CD4 T cells. Furthermore, we compared the effects of different inflammatory cytokines that are crucial for Th1 and Th17 development in regulating the IL-7Rα/PD-1 balance. RESULTS: We discovered that T-bet suppresses the expression of inhibitory receptors (PD-1 and LAG-3) and promotes IL-7Rα expression in myelin-specific CD4 T cells in vitro and in vivo. As a result, T-bet skews IL-7Rα/PD-1 balance towards IL-7Rα and promotes enhanced effector function. Furthermore, IL-12 enhances IL-7Rα expression in a T-bet independent manner in myelin-specific Th1 cells. Meanwhile, IL-6, the cytokine inducing highly encephalitogenic Th17 differentiation, suppresses PD-1 while upregulating IL-7Rα, skewing IL-7Rα/PD-1 balance towards IL-7Rα, and promoting enhanced effector function. Moreover, blocking IL-7 signaling in myelin-specific CD4 T cells by αIL-7Rα significantly delays experimental autoimmune encephalomyelitis (EAE) onset and reduces disease severity. CONCLUSIONS: T-bet is a major transcription factor regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T cells during EAE development, and there is a positive correlation between several major determinants promoting T cell encephalitogenicity (T-bet, IL-6, IL-12) and an IL-7Rα/PD-1 balance skewed towards IL-7Rα. Furthermore, IL-7 signaling inhibits PD-1 expression in myelin-specific CD4 T cells and blocking IL-7 signaling suppresses T cell encephalitogenicity. Therefore, interference with inhibitory pathways and IL-7Rα expression may suppress the encephalitogenic potential of myelin-specific CD4 T cells and have therapeutic benefits for MS patients.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/cirurgia , Regulação da Expressão Gênica/imunologia , Receptores de Interleucina-17/metabolismo , Animais , Sistema Nervoso Central/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Células Th1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...