Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708614

RESUMO

Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Ubiquitinação , Animais , Reparo do DNA/genética , Enzimas Desubiquitinantes/metabolismo , Regulação da Expressão Gênica , Humanos
3.
Cell Death Differ ; 26(10): 2100-2114, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30692641

RESUMO

Lysine-specific demethylase 6A (KDM6A) and members of the Switch/Sucrose Non-Fermentable (SWI/SNF) family are known to counteract the activity of Enhancer of Zeste Homolog 2 (EZH2), which is often overexpressed and is associated with poor prognosis in muscle-invasive bladder cancer. Here we provide evidence that alterations in chromatin modifying enzymes, including KDM6A and members of the SWI/SNF complex, are frequent in muscle-invasive bladder cancer. We exploit the loss of function mutations in KDM6A and SWI/SNF complex to make bladder cancer cells susceptible to EZH2-based epigenetic therapy that activates an immune response to drive tumor cell differentiation and death. We reveal a novel mechanism of action of EZH2 inhibition, alone and in combination with cisplatin, which induces immune signaling with the largest changes observed in interferon gamma (IFN-γ). This upregulation is a result of activated natural killer (NK) signaling as demonstrated by the increase in NK cell-associated genes MIP-1α, ICAM1, ICAM2, and CD86 in xenografts treated with EZH2 inhibitors. Conversely, EZH2 inhibition results in decreased expression of pluripotency markers, ALDH2 and CK5, and increased cell death. Our results reveal a novel sensitivity of muscle-invasive bladder cancer cells with KMD6A and SWI/SNF mutations to EZH2 inhibition alone and in combination with cisplatin. This sensitivity is mediated through increased NK cell-related signaling resulting in tumor cell differentiation and cell death.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Nus , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Pharmacol Res ; 131: 143-149, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501732

RESUMO

Stromal Antigen 2 (STAG2) is one of four components of the cohesin complex and predominantly functions in sister chromatid cohesion and segregation. STAG2 is the most frequently mutated cohesin subunit and was recently identified as a gene that is commonly altered in bladder cancer. The significance of these mutations remains controversial. Some studies associate loss of STAG2 expression with low stage and low grade bladder tumors, as well as with improved clinical outcomes. In other cases, STAG2 inactivation has been shown to be a predictor of worse outcome for these patients. The role of STAG2 in aneuploidy also remains controversial. Loss of STAG2 is associated with significant changes in chromosome number in certain cell lines, while in others, aneuploidy is not induced or results remain inconclusive. At this time, little is known about the influence of STAG2 on cellular migration, invasion, proliferation, and cell death, and such studies are required to determine the role of STAG2 in bladder cancer and other malignancies.


Assuntos
Antígenos Nucleares/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Aneuploidia , Animais , Antígenos Nucleares/análise , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Deleção de Genes , Humanos , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...