Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(32): e202407822, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763897

RESUMO

The selective formation of antimony-carbon bonds via organic superbase catalysis under metal- and salt-free conditions is reported. This novel approach utilizes electron-deficient stibine, Sb(C6F5)3, to give upon base-catalyzed reactions with weakly acidic aromatic and heteroaromatic hydrocarbons access to a range of new aromatic and heteroaromatic stibines, respectively, with loss of C6HF5. Also, the significantly less electron-deficient stibines, Ph2SbC6F5 and PhSb(C6F5)2 smoothly underwent base-catalyzed exchange reactions with a range of terminal alkynes to generate the stibines of formulae PhSb(C≡CPh)2, and Ph2SbC≡CR [R=C6H5, C6H4-NO2, COOEt, CH2Cl, CH2NEt2, CH2OSiMe3, Sb(C6H5)2], respectively. These formal substitution reactions proceed with high selectivity as only the C6F5 groups serve as a leaving group to be liberated as C6HF5 upon formal proton transfer from the alkyne. Kinetic studies of the base-catalyzed reaction of Ph2SbC6F5 with phenyl acetylene to form Ph2SbC≡CPh and C6HF5 suggested the empirical rate law to exhibit a first-order dependence with respect to the base catalyst, alkyne and stibine. DFT calculations support a pathway proceeding via a concerted σ-bond metathesis transition state, where the base catalyst activates the Sb-C6F5 bond sequence through secondary bond interactions.

2.
J Comput Chem ; 45(12): 863-877, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38153839

RESUMO

This work provides a detailed multi-component analysis of aromaticity in monosubstituted (X = CH3, C H 2 - , C H 2 + , NH2, NH-, NH+, OH, O-, and O+) and para-homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single-reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0-T1 splitting) properties. The findings reveal that appropriate π-electron-donating and π-electron-accepting substituents with suitable size and symmetry can interact with the π-system of the ring, significantly influencing π-electron delocalization. While the charge factor has a minimal impact on π-electron delocalization, the presence of a pz orbital capable of interacting with the π-electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.

3.
J Phys Chem A ; 127(45): 9430-9441, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37920974

RESUMO

The phenalene (triangulene) and olympicene molecules belong to the polycyclic aromatic hydrocarbon class, which have attracted substantial technological interest due to their unique electronic properties. Electronic structure calculations serve as a valuable tool in investigating the stability and reactivity of these molecular systems. In the present work, the multireference calculations, namely, the complete active space second-order perturbation theory and multireference averaged quadratic coupled cluster (MR-AQCC), were employed to study the reactivity and stability of phenalene and olympicene isomers, as well as their modified structures where the sp3-carbon at the borders were removed. The harmonic oscillator model of aromaticity (HOMA) and the nucleus-independent chemical shift as geometric and magnetic indexes calculated with density functional theory were utilized to assess the aromaticity of the studied molecules. These indexes were compared with properties such as the excitation energy and natural orbitals occupation. The reactivity analyzed using the HOMA index combined with MR-AQCC revealed the radical character of certain structures as well as the weakening of their aromaticity. Moreover, the results suggest that the removal of sp3-carbon atoms and the addition of hydrogen atoms did not alter the π network and the excitation energies of the phenalene molecules.

4.
Phys Chem Chem Phys ; 25(40): 27380-27393, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792036

RESUMO

The biradicaloid character of different types of polycyclic aromatic hydrocarbons (PAHs) based on small band gaps is an important descriptor to assess their opto-electronic properties. In this work, the unpaired electron densities and numbers of unpaired electrons (NU values) calculated at the high-level multireference averaged quadratic coupled-cluster (MR-AQCC) method are used to develop a test set to assess the capabilities of different biradical descriptors based on density functional theory. A benchmark collection of 29 different compounds has been selected. The DFT descriptors contain primarily the fractional occupation number weighted electron density (FOD) based on simplified thermally-assisted-occupation density functional theory (TAO-DFT) calculations, but the singlet-triplet energy difference and other descriptors denoted as y0 and nLUNO have been considered as well. After adjustment of the literature-recommended finite temperatures, a very good, detailed agreement between unpaired density and FOD analysis is observed which is also manifested in excellent statistical correlations. The other two descriptors also show good correlations even though the absolute scaling is not satisfactory. A new linear fit of FOD data to the MR-AQCC reference values leads to an improved regression relation for determining the recommended finite temperature value in dependence of the Hartree-Fock exchange. This provides the basis for fast and reliable assessment of the biradical character of many classes of PAHs without the need for performing computationally extended MR calculations.

5.
J Phys Chem A ; 127(40): 8287-8296, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788047

RESUMO

The nonplanar character of graphene with a single carbon vacancy (SV) defect is investigated utilizing a pyrene-SV model system by way of complete-active-space self-consistent field theory (CASSCF) and multireference configuration interaction singles and doubles (MR-CISD) calculations. Planar structures were optimized with both methods, showing the 3B1 state to be the ground state with three energetically close states within an energy range of 1 eV. These planar structures constitute saddle points. However, following the out-of-plane imaginary frequency yields more stable (by 0.22 to 0.53 eV) but nonplanar structures of Cs symmetry. Of these, the 1A' structure is the lowest in energy and is strongly deformed into an L shape. Following a further out-of-plane imaginary frequency in the nonplanar structures leads to the most stable but most deformed singlet structure of C1 symmetry. In this structure, a bond is formed between the carbon atom with the dangling bond and a carbon of the cyclopentadienyl ring. This bond stabilizes the structure by more than 3 eV compared to the planar 3B1 structure. Higher excited states were calculated at the MR-CISD level, showing a grouping of four states low in energy and higher states starting around 3 eV.

6.
J Comput Chem ; 44(31): 2424-2436, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37638684

RESUMO

The alternant polycyclic aromatic hydrocarbon pyrene has photophysical properties that can be tuned with different donor and acceptor substituents. Recently, a D (donor)-Pyrene (bridge)-A (acceptor) system, DPA, with the electron donor N,N-dimethylaniline (DMA), and the electron acceptor trifluoromethylphenyl (TFM), was investigated by means of time-resolved spectroscopic measurements (J. Phys. Chem. Lett. 2021, 12, 2226-2231). DPA shows great promise for potential applications in organic electronic devices. In this work, we used the ab initio second-order algebraic diagrammatic construction method ADC(2) to investigate the excited-state properties of a series of analogous DPA systems, including the originally synthesized DPAs. The additionally investigated substituents were amino, fluorine, and methoxy as donors and nitrile and nitro groups as acceptors. The focus of this work was on characterizing the lowest excited singlet states regarding charge transfer (CT) and local excitation (LE) characters. For the DMA-pyrene-TFM system, the ADC(2) calculations show two initial electronic states relevant for interpreting the photodynamics. The bright S1 state is locally excited within the pyrene moiety, and an S2 state is localized ~0.5 eV above S1 and characterized as a donor to pyrene CT state. HOMO and LUMO energies were employed to assess the efficiency of the DPA compounds for organic photovoltaics (OPVs). HOMO-LUMO and optical gaps were used to estimate power conversion and light-harvesting efficiencies for practical applications in organic solar cells. Considering the systems using smaller D/A substituents, compounds with the strong acceptor NO2 substituent group show enhanced CT and promising properties for use in OPVs. Some of the other compounds with small substituents are also found to be competitive in this regard.

7.
J Comput Chem ; 44(31): 2414-2423, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615205

RESUMO

Time-dependent density functional theory (TDDFT) was applied to gain insights into the electronic and vibrational spectroscopic properties of an important electron transport mediator, methyl viologen (MV2+ ). An organic dication, MV2+ has numerous applications in electrochemistry that include energy conversion and storage, environmental remediation, and chemical sensing and electrosynthesis. MV2+ is easily reduced by a single electron transfer to form a radical cation species (MV•+ ), which has an intense UV-visible absorption near 600 nm. The redox properties of the MV2+ /MV•+ couple and light-sensitivity of MV•+ have made the system appealing for photo-electrochemical energy conversion (e.g., solar hydrogen generation from water) and the study of photo-induced charge transfer processes through electronic absorption and resonance Raman spectroscopic measurements. The reported work applies leading TDDFT approaches to investigate the electronic and vibrational spectroscopic properties of MV2+ and MV•+ . Using a conventional hybrid exchange functional (B3-LYP) and a long-range corrected hybrid exchange functional (ωB97X-D3), including with a conductor-like polarizable continuum model to account for solvation, the electronic absorption and resonance Raman spectra predicted are in good agreement with experiment. Also analyzed are the charge transfer character and natural transition orbitals derived from the TDDFT vertical excitations calculated. The findings and models developed further the understanding of the electronic properties of viologens and related organic redox mediators important in renewable energy applications and serve as a reference for guiding the interpretation of electronic absorption and Raman spectra of the ions.

8.
J Phys Chem A ; 127(31): 6385-6399, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494557

RESUMO

The ongoing shift toward clean, sustainable energy is a primary driving force behind hydrogen fuel research. Safe and effective storage of hydrogen is a major challenge (particularly for mobile applications) and requires a detailed understanding of the atomic level interactions of hydrogen with its host materials. The light mass of hydrogen, however, implies that quantum effects are important, so a quantum dynamical treatment is required to properly account for these effects in computational simulations. As one such example, we describe herein the hydrogen exchange dynamics between a hydride and a dihydrogen ligand in the [FeH(H2)(PH3)4]+ model complex. A global three-dimensional (3D) potential energy surface (PES) was constructed by fitting to and interpolating from a discrete set of grid points computed using density functional theory; exact quantum dynamical calculations were then carried out on the 3D PES using discrete variable representation basis sets. Energy levels and their quantum tunneling splittings were computed up to 3000 cm-1 above the ground state. Within that energy range, all three fundamentals have been identified using wave function plots, as well as the first three overtones of the exchange (reaction coordinate) motion and several of its combination bands. From the tunneling splittings, the Boltzmann-averaged tunneling rates were computed. The Arrhenius plot of the total exchange rate shows a clear transition around 150 K, below which the activation energy is essentially zero and above which it is less than half of the electronic structure barrier. This indicates that exchange rates are governed by quantum tunneling throughout the relevant temperature range with the low-temperature regime dominated by a single quantum (ground) state. This work is the first-ever fully quantum dynamical study to investigate the hydrogen exchange dynamics between hydride and dihydrogen ligands coordinated to a transition-metal complex.

9.
J Comput Chem ; 44(6): 755-765, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36373956

RESUMO

The chemical stability and the low-lying singlet and triplet excited states of BN-n-acenes (n = 1-7) were studied using single reference and multireference methodologies. From the calculations, descriptors such as the singlet-triplet splitting, the natural orbital (NO) occupations and aromaticity indexes are used to provide structural and energetic analysis. The boron and nitrogen atoms form an isoelectronic pair of two carbon atoms, which was used for the complete substitution of these units in the acene series. The structural analysis confirms the effects originated from the insertion of a uniform pattern of electronegativity difference within the molecular systems. The covalent bonds tend to be strongly polarized which does not happen in the case of a carbon-only framework. This effect leads to a charge transfer between neighbor atoms resulting in a more strengthened structure, keeping the aromaticity roughly constant along the chain. The singlet-triplet splitting also agrees with this stability trend, maintaining a consistent gap value for all molecules. The BN-n-acenes molecules possess a ground state with monoconfigurational character indicating their electronic stability. The low-lying singlet excited states have charge transfer character, which proceeds from nitrogen to boron.

10.
J Am Chem Soc ; 144(51): 23492-23504, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36534052

RESUMO

Singlet fission in covalently bound acene dimers in solution is driven by the interplay of excitonic and singlet correlated triplet 1(TT) states with intermediate charge-transfer states, a process which depends sensitively on the solvent environment. We use high-level electronic structure methods to explore this singlet fission process in a linked tetracene dimer, with emphasis on the symmetry-breaking mechanism for the charge-transfer (CT) states induced by low-frequency antisymmetric vibrations and polar/polarizable solvents. A combination of the second-order algebraic diagrammatic construction (ADC(2)) and density functional theory/multireference configuration interaction (DFT/MRCI) methods are employed, along with a state-specific conductor-like screening model (COSMO) solvation model in the former case. This work quantifies, for the first time, an earlier mechanistic proposal [Alvertis et al., J. Am. Chem. Soc. 2019, 141, 17558] according to which solvent-induced symmetry breaking leads to a high-energy CT state which interacts with the correlated triplet state, resulting in singlet fission. An approximate assessment of the nonadiabatic interactions between the different electronic states underscores that the CT states are essential in facilitating the transition from the bright excitonic state to the 1(TT) state leading to singlet fission. We show that several types of symmetry-breaking inter- and intra-fragment vibrations play a crucial role in a concerted mechanism with the solvent environment and with the symmetric inter-fragment torsion, which tunes the admixture of excitonic and CT states. This offers a new perspective on how solvent-induced symmetry-breaking CT can be understood and how it cooperates with intramolecular mechanisms in singlet fission.

11.
J Chem Phys ; 157(15): 154305, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36272808

RESUMO

Pyrene fluorescence after a high-energy electronic excitation exhibits a prominent band shoulder not present after excitation at low energies. The standard assignment of this shoulder as a non-Kasha emission from the second-excited state (S2) has been recently questioned. To elucidate this issue, we simulated the fluorescence of pyrene using two different theoretical approaches based on vertical convolution and nonadiabatic dynamics with nuclear ensembles. To conduct the necessary nonadiabatic dynamics simulations with high-lying electronic states and deal with fluorescence timescales of about 100 ns of this large molecule, we developed new computational protocols. The results from both approaches confirm that the band shoulder is, in fact, due to S2 emission. We show that the non-Kasha behavior is a dynamic-equilibrium effect not caused by a metastable S2 minimum. However, it requires considerable vibrational energy, which can only be achieved in collisionless regimes after transitions into highly excited states. This strict condition explains why the S2 emission was not observed in some experiments.

12.
Chem Commun (Camb) ; 58(67): 9385-9388, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35904557

RESUMO

A thermally stable FLP-CO2 adduct of pronounced nucleophilic properties that forms a range of Lewis acid-base adducts with strong Lewis acids is reported. Upon addition of Tf2O, it generates a cationic triflate, which undergoes C-O bond cleavage to give the formal FLP adduct of the elusive dication C2O32+.

13.
Phys Chem Chem Phys ; 24(19): 11501-11509, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35403629

RESUMO

Harnessing aluminum oxidation energy requires navigating the particle's passivation shell composed of alumina. The shell is a barrier to aluminum oxidation but can also exothermically react with halogenated species and therefore contribute to the overall energy generated during aluminum particle combustion. Fluorination reactions with alumina have been studied because fluorine is abundant in binder formulations that commonly surround aluminum particles in an energetic mixture. However, iodine has emerged as an alternative halogenated-based binder or oxidizer because iodine gas provides ancillary benefits such as chemical neutralization of biological agents or sterilization of contaminated environments. This study used density functional theory (DFT) calculations to evaluate potential reaction pathways for aluminum-iodine combustion. Relative to fluorinated fragments such as HF and F-, the adsorption energies associated with HI and I- are nearly triple the exchange reaction energy available from fluorination reactions with alumina (-189 and -278 kJ mol-1 for HI and I-, respectively). However, exchange reactions between iodinated species and the alumina surface are energetically unfavorable. These results explain that through adsorption, alumina surface exothermic reactions with iodine are more energetic than with fluorine fragments. Experiments performed with differential scanning calorimetry (DSC) confirm the higher magnitude of energy generated for iodination compared with fluorination reactions with alumina. Additionally, strong adsorption energies can promote synthesis of new shell chemistries. Adsorption in solution will promote alumina dissolution and iodine precipitation reactions to produce hydroxyl complexes and iodinated species synthesized on the surface of the particle, thereby replacing alumina with alternative passivation shell chemistry.

14.
Phys Chem Chem Phys ; 24(3): 1722-1735, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984424

RESUMO

The design of materials with enhanced luminescence properties is a fast-developing field due to the potential applicability of these materials as light-emitting diodes or for bioimaging. A transparent way to enhance the emission properties of interesting molecular candidates is blocking competing and unproductive non-radiative relaxation pathways by the restriction of intramolecular motions. Rationalized functionalization is an important possibility to achieve such restrictions. Using time-dependent density functional theory (TD-DFT) based on the ωB97XD functional and the semiempirical tight-binding method including long-range corrections (TD-LC-DFTB), this work investigates the effect of functionalization of the paradigmatic tetraphenylethylene (TPE) on achieving restricted access to conical intersections (RACI). Photodynamical surface hopping simulations have been performed on a larger set of compounds including TPE and ten functionalized TPE compounds. Functionalization has been achieved by means of electron-withdrawing groups, bulky groups which block the relaxation channels via steric hindrance and groups capable of forming strong hydrogen bonds, which restrict the motion via the formation of hydrogen bond channels. Most of the investigated functionalized TPE candidates show ultrafast deactivation to the ground state due to their still existing structural flexibility, but two examples, one containing -CN and -CF3 groups and a second characterized by a network of hydrogen bonds, have been identified as interesting candidates for creating efficient luminescence properties in solution.

15.
Front Chem ; 10: 1110240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688043

RESUMO

A new type of chirality, orientational chirality, consisting of a tetrahedron center and a remotely anchored blocker, has been discovered. The key structural element of this chirality is characterized by multiple orientations directed by a through-space functional group. The multi-step synthesis of orientational chiral targets was conducted by taking advantage of asymmetric nucleophilic addition, Suzuki-Miyaura cross-coupling and Sonogashira coupling. An unprecedented catalytic species showing a five-membered ring consisting of C (sp2)-Br-Pd-C (sp2) bonds was isolated during performing Suzuki-Miyaura cross-coupling. X-ray diffraction analysis confirmed the species structure and absolute configuration of chiral orientation products. Based on X-ray structures, a model was proposed for the new chirality phenomenon to differentiate the present molecular framework from previous others. DFT computational study presented the relative stability of individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry branch and to have a broad impact on chemical, biomedical, and material sciences in the future.

16.
ACS Omega ; 6(34): 21952-21959, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497890

RESUMO

Understanding ubiquitous methyl transfer reactions requires a systematic study of thermodynamical parameters that could reveal valuable information about the nature of the chemical bond and the feasibility of those processes. In the present study, the O-CH3 bond dissociation enthalpies (BDEs) of 67 compounds belonging to phenol/anisole systems were calculated employing the Gaussian-4 (G4) method. Those compounds contain different substituents including alkyl groups, electron-donating groups (EDGs), and electron-withdrawing groups (EWGs). The results show that the bigger branched alkyl groups and EDGs will destabilize the O-CH3 bond, while EWGs have the opposite effect. A combination of different effects including steric effects, hydrogen bonds, and substituents and their position can achieve around 20 kcal/mol difference compared to the basic phenyl frame. Also, the linear correlation between σp + and O-CH3 BDE can provide a reference for the O-CH3 BDE prediction. The present study represents a step forward to establish a comprehensive O-CH3 BDE database to understand the substituent effect and make its contribution to the rational design of inhibitors and drugs.

17.
J Phys Chem A ; 125(26): 5765-5778, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165983

RESUMO

3-Hydroxyflavon (3-HF) represents an interesting paradigmatic compound to study excited-state intramolecular proton transfer (ESIPT) and intermolecular (ESInterPT) processes to explain the experimentally observed dual fluorescence in solvents containing protic contamination (water) as opposed to single fluorescence in highly purified nonpolar solvents. In this work, adiabatic on-the-fly molecular dynamics simulations have been performed for isolated 3-HF in an aqueous solution using a polarizable continuum model and including explicit water molecules to represent adequately hydrogen bonding. For the calculation of the excited state, time-dependent density functional theory and the Becke-3-Lee-Yang-Parr (B3LYP) functional have been used. For the isolated 3-HF, ultrafast ESIPT from the enol group to the neighboring keto group has been observed. The calculated PT time of 48 fs agrees well with the experimental value of 39 fs. Addition of one water molecule quenches this ESIPT process but shows an intermolecular concerted or stepwise tautomerization process via the bridging water molecule. Adding a second or more water molecules inhibits this ESInterPT process to a large degree. Most of the trajectories do not show any PT, preserving the initial excited-state enol structure, which is the origin of the violet-blue fluorescence appearing in the solvents contaminated with protic components.

18.
J Chem Phys ; 154(10): 104308, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722014

RESUMO

Density functional theory calculations were used to reveal the mechanism for the fluorination reaction of active Lewis acid sites on alumina structures, which is important in understanding the pyrophoric processes involving Al particles. In this reaction, hydroxyl groups of active sites are replaced by fluorine anions. Alumina structures were represented by three aluminum aqua hydroxo clusters (labeled AlOOH), in which the Al atom had different coordination spheres, particularly four, five, or six. The F-bearing molecules HF, CH3F, and CF4 were taken as reactants for the fluorination reactions. The overall reaction was represented by four reaction steps as follows: (i) formation of the reaction complex, (ii) activation of the transition state (TS), (iii) deactivation of the TS with a formation of the product complex, and (iv) its decomplexation to individual products. The active reaction center of the TS structure is four-membered, in which two bonds break heterolytically and two form. The lowest reaction barriers were observed for the HF molecule, while the two other molecules had significantly higher reaction barriers. Similarly, the largest overall reaction energies (in absolute value) were found for HF, especially for the five- and six-coordinated Al centers. While the positive charge on the Al center remained almost constant throughout the reaction steps, large charge changes were observed for carbon bearing molecules with a formation of the carbenium cations in the TS step. Realizing the important role of HF in promoting exothermic reactions will enable new molecular design strategies for transforming energy release properties of aluminum powder fuels.

19.
Research (Wash D C) ; 2021: 3565791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33629070

RESUMO

Conjugated polymers and oligomers have great potentials in various fields, especially in materials and biological sciences because of their intriguing electronic and optoelectronic properties. In recent years, the through-space conjugation system has emerged as a new assembled pattern of multidimensional polymers. Here, a novel series of structurally condensed multicolumn/multilayer 3D polymers and oligomers have been designed and synthesized through one-pot Suzuki polycondensation (SPC). The intramolecularly stacked arrangement of polymers can be supported by either X-ray structural analysis or computational analysis. In all cases, polymers were obtained with modest to good yields, as determined by GPC and 1H-NMR. MALDI-TOF analysis has proven the speculation of the step-growth process of this polymerization. The computational study of ab initio and DFT calculations based on trimer and pentamer models gives details of the structures and the electronic transition. Experimental results of optical and AIE research confirmed by calculation indicates that the present work would facilitate the research and applications in materials.

20.
J Phys Chem A ; 125(5): 1152-1165, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33507752

RESUMO

A preexisting chemisorbed defect is well-known to increase the reactivity of graphene which is normally chemically inert. Specifically, the presence of chemisorbed hydrogen atoms forming an sp3-hybridized C-H bond is known to increase the reactivity of neighboring carbon atoms toward additional hydrogenation with wide-ranging applications from materials science to astrochemistry. In this work, static DFT and DFT-based direct dynamics simulations are used to characterize the reactivity of a graphene sheet around an existing C-H bond defect. The spin density landscape shows how to guide subsequent H atom additions, always bonding most strongly to the carbon atom with greatest spin density. Molecular dynamics of an impinging H atom under thermal conditions with defect graphene was used to determine the statistics of probable reactions. The most frequent outcome is inelastic scattering (48%) and then Eley-Rideal (ER) abstraction of the chemisorbed H atom as vibrationally hot H2 (40%), while the least likely, but probably most interesting, result is formation of a novel C-H bond (12%). The C-H bonds always form in the ß sublattice. The carbon atom in the para position shows to be most reactive toward the incoming H atom, followed by the ortho carbon, in agreement with the spin density computed in the static calculations. Globally, the graphene energy surface is repulsive, but the defects create local channels into this energy surface through which reactants can move locally through and react with the activated surface without a barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...