Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 17(7): 1553-1578, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411045

RESUMO

Shotgun proteomics aims to identify and quantify the thousands of proteins in complex mixtures such as cell and tissue lysates and biological fluids. This approach uses liquid chromatography coupled with tandem mass spectrometry and typically generates hundreds of thousands of mass spectra that require specialized computational environments for data analysis. PatternLab for proteomics is a unified computational environment for analyzing shotgun proteomic data. PatternLab V (PLV) is the most comprehensive and crucial update so far, the result of intensive interaction with the proteomics community over several years. All PLV modules have been optimized and its graphical user interface has been completely updated for improved user experience. Major improvements were made to all aspects of the software, ranging from boosting the number of protein identifications to faster extraction of ion chromatograms. PLV provides modules for preparing sequence databases, protein identification, statistical filtering and in-depth result browsing for both labeled and label-free quantitation. The PepExplorer module can even pinpoint de novo sequenced peptides not already present in the database. PLV is of broad applicability and therefore suitable for challenging experimental setups, such as time-course experiments and data handling from unsequenced organisms. PLV interfaces with widely adopted software and community initiatives, e.g., Comet, Skyline, PEAKS and PRIDE. It is freely available at http://www.patternlabforproteomics.org .


Assuntos
Proteômica , Software , Bases de Dados de Proteínas , Proteínas/química , Proteômica/métodos , Espectrometria de Massas em Tandem
2.
Bioinformatics ; 35(18): 3489-3490, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715205

RESUMO

MOTIVATION: We present the first tool for unbiased quality control of top-down proteomics datasets. Our tool can select high-quality top-down proteomics spectra, serve as a gateway for building top-down spectral libraries and, ultimately, improve identification rates. RESULTS: We demonstrate that a twofold rate increase for two E. coli top-down proteomics datasets may be achievable. AVAILABILITY AND IMPLEMENTATION: http://patternlabforproteomics.org/tdgc, freely available for academic use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteômica , Escherichia coli , Software , Espectrometria de Massas em Tandem
3.
Bioinformatics ; 33(12): 1883-1885, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28186229

RESUMO

MOTIVATION: Around 75% of all mass spectra remain unidentified by widely adopted proteomic strategies. We present DiagnoProt, an integrated computational environment that can efficiently cluster millions of spectra and use machine learning to shortlist high-quality unidentified mass spectra that are discriminative of different biological conditions. RESULTS: We exemplify the use of DiagnoProt by shortlisting 4366 high-quality unidentified tandem mass spectra that are discriminative of different types of the Aspergillus fungus. AVAILABILITY AND IMPLEMENTATION: DiagnoProt, a demonstration video and a user tutorial are available at http://patternlabforproteomics.org/diagnoprot . CONTACT: andrerfsilva@gmail.com or paulo@pcarvalho.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Software , Espectrometria de Massas em Tandem/métodos , Aspergillus/metabolismo , Proteínas Fúngicas/análise
4.
Front Oncol ; 6: 183, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597932

RESUMO

Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient's GBM but obtained from two surgeries a year's time apart. Our analysis also included GBM's fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor's anatomical region. Nevertheless, we report differentially abundant proteins from GBM's fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.

5.
Nat Protoc ; 11(1): 102-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26658470

RESUMO

PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with de novo sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from http://patternlabforproteomics.org.


Assuntos
Proteômica/métodos , Software , Integração de Sistemas , Bases de Dados de Proteínas , Humanos , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Fatores de Tempo
6.
J Proteome Res ; 11(12): 5836-42, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23145836

RESUMO

A strategy for treating cancer is to surgically remove the tumor together with a portion of apparently healthy tissue surrounding it, the so-called "resection margin", to minimize recurrence. Here, we investigate whether the proteomic profiles from biopsies of gastric cancer resection margins are indeed more similar to those from healthy tissue than from cancer biopsies. To this end, we analyzed biopsies using an offline MudPIT shotgun proteomic approach and performed label-free quantitation through a distributed normalized spectral abundance factor approach adapted for extracted ion chromatograms (XICs). A multidimensional scaling analysis revealed that each of those tissue-types is very distinct from each other. The resection margin presented several proteins previously correlated with cancer, but also other overexpressed proteins that may be related to tumor nourishment and metastasis, such as collagen alpha-1, ceruloplasmin, calpastatin, and E-cadherin. We argue that the resection margin plays a key role in Paget's "soil to seed" hypothesis, that is, that cancer cells require a special microenvironment to nourish and that understanding it could ultimately lead to more effective treatments.


Assuntos
Biomarcadores Tumorais/análise , Proteoma/análise , Software , Neoplasias Gástricas/metabolismo , Biomarcadores Tumorais/metabolismo , Biópsia , Caderinas/metabolismo , Estudos de Casos e Controles , Ceruloplasmina/metabolismo , Cromatografia por Troca Iônica/métodos , Colágeno Tipo XI/metabolismo , Bases de Dados de Proteínas , Feminino , Humanos , Masculino , Metástase Neoplásica/diagnóstico , Proteínas de Neoplasias/metabolismo , Prognóstico , Proteômica/métodos , Antro Pilórico/metabolismo , Antro Pilórico/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...