Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(18): 4696-4702, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705792

RESUMO

Germanium (Ge) is increasingly used as a substrate for high-performance optoelectronics, photovoltaics, and electronic devices. These devices are usually grown on thick and rigid Ge substrates manufactured by classical wafering techniques. Nanomembranes (NMs) provide an alternative to this approach while offering wafer-scale lateral dimensions, weight reduction, waste limitation, and cost effectiveness. Herein, we introduce the Porous germanium Efficient Epitaxial LayEr Release (PEELER) process, which consists of the fabrication of wafer-scale detachable Ge NMs on porous Ge (PGe) and substrate reuse. We demonstrate the growth of Ge NMs with monocrystalline quality as revealed by high-resolution transmission electron microscopy (HRTEM) characterization. Together with the surface roughness below 1 nm, it makes the Ge NMs suitable for growth of III-V materials. Additionally, the embedded nanoengineered weak layer enables the detachment of the Ge NMs. Finally, we demonstrate the wet-etch-reconditioning process of the Ge substrate, allowing its reuse, to produce multiple free-standing NMs from a single parent wafer. The PEELER process significantly reduces the consumption of Ge in the fabrication process, paving the way for a new generation of low-cost flexible optoelectronic devices.

2.
Nat Commun ; 13(1): 6624, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333304

RESUMO

A perfectly compliant substrate would allow the monolithic integration of high-quality semiconductor materials such as Ge and III-V on Silicon (Si) substrate, enabling novel functionalities on the well-established low-cost Si technology platform. Here, we demonstrate a compliant Si substrate allowing defect-free epitaxial growth of lattice mismatched materials. The method is based on the deep patterning of the Si substrate to form micrometer-scale pillars and subsequent electrochemical porosification. The investigation of the epitaxial Ge crystalline quality by X-ray diffraction, transmission electron microscopy and etch-pits counting demonstrates the full elastic relaxation of defect-free microcrystals. The achievement of dislocation free heteroepitaxy relies on the interplay between elastic deformation of the porous micropillars, set under stress by the lattice mismatch between Ge and Si, and on the diffusion of Ge into the mesoporous patterned substrate attenuating the mismatch strain at the Ge/Si interface.

3.
Small ; 18(5): e2101890, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761502

RESUMO

Breakthroughs in cutting-edge research fields such as hetero-integration of materials and the development of quantum devices are heavily bound to the control of misfit strain during heteroepitaxy. While remote epitaxy offers one of the most intriguing avenues, demonstrations of functional hybrid heterostructures are hardly possible without a deep understanding of the nucleation and growth kinetics of 3D crystals on graphene and their mutual interactions. Here, the kinetics of such processes from real-time observations of germanium (Ge) growth on freestanding single layer graphene (SLG) using in-situ transmission electron microscopy are unraveled. This powerful technique provides a unique opportunity to observe new and yet unexplored phenomena, which are not accessible to the standard ex situ characterizations. Through direct observations, remote interactions are elucidated between Ge crystals through the graphene layer in double heterostructures of Ge/graphene/Ge. Notably, the data show real-time evidence of vertical Ge atoms diffusion through the graphene layer. This phenomenon is attributed to the remote interactions of Ge atoms through the graphene lattice, due to its interatomic interaction transparency. Additionally, key mechanisms governing nucleation and initial growth in graphene were systematically determined. These findings enlighten the growth mechanism of graphene and provide a new pathway for disruptive hybrid semiconductor-graphene devices.

4.
J Phys Condens Matter ; 33(38)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34212865

RESUMO

We investigate the ultrafast photoconductivity and charge-carrier transport in thermally annealed Fe-implanted InGaAs/InP films using time-resolved terahertz spectroscopy. The samples were fabricated from crystalline InGaAs films amorphized with Fe ions implantation. The rapid thermal annealing of the InGaAs layer induces solid recrystallization through the formation of polycrystalline grains whose sizes are shown to increase with increasing annealing temperature within the 300-700 °C range. Based on the influence of the laser fluence, the temporal profile of the time-resolved photoconductivity was reproduced using a system of rate equations that describe the photocarrier dynamics in terms of a capture/recombination mechanism. For annealing temperatures below 500 °C, the capture time is found to be less than 1 ps while the recombination time from the charged states did not exceed 5 ps. However, for higher annealing temperatures, the capture and the recombination times show a continuous increase, reaching 7.1 ps and 1 ns respectively, for the film annealed at 700 °C. Frequency-dependent photoconductivity curves are analyzed via a modified Drude-Smith model that considers a diffusive restoring current and the confining particles' sizes. Our results demonstrate that the localization parameter of the photocarrier transport model is correlated to the polycrystalline grain size. We also show that a relatively high effective mobility of about 2570 cm2 V-1 s-1is preserved in all these Fe-implanted InGaAs films.

5.
Nanoscale Adv ; 3(9): 2577-2584, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134150

RESUMO

The nature of the interface between the components of a nanocomposite is a major determining factor in the resulting properties. Using a graphene-mesoporous germanium nanocomposite with a core-shell structure as a template for complex graphene-based nanocomposites, an approach to quantify the interactions between the graphene coating and the component materials is proposed. By monitoring the pressure-induced shift of the Raman G-peak, the degree of coupling between the components, a parameter that is critical in determining the properties of a nanocomposite, can be evaluated. In addition, pressure-induced transformations are a way to tune the physical and chemical properties of materials, and this method provides an opportunity for the controlled design of nanocomposites.

6.
Nanoscale ; 12(47): 23984-23994, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33094784

RESUMO

Graphene is a key material of interest for the modification of physicochemical surface properties. However, its flat surface is a limitation for applications requiring a high specific surface area. This restriction may be overcome by integrating 2D materials in a 3D structure. Here, a strategy for the controlled synthesis of Graphene-Mesoporous Germanium (Gr-MP-Ge) nanomaterials is presented. Bipolar electrochemical etching and chemical vapor infiltration were employed, respectively, for the nanostructuration of Ge substrate and subsequent 3D nanographene coating. While Raman spectroscopy reveals a tunable domain size of nanographene with the treatment temperature, transmission electron microscopy data confirm that the crystallinity of Gr-MP-Ge is preserved. X-ray photoelectron spectroscopy indicates the non-covalent bonding of carbon to Ge for Gr-MP-Ge. State-of-the-art molecular dynamics modeling provides a deeper understanding of the synthesis process through the presence of radicals. The successful synthesis of these nanomaterials offers the integration of nanographene into a 3D structure with a high aspect ratio and light weight, thereby opening avenues to a variety of applications for this versatile nanomaterial.

7.
Nanoscale Adv ; 2(1): 340-346, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36133992

RESUMO

We investigate the structural, optical and terahertz properties of graphene-mesoporous silicon nanocomposites using Raman, terahertz time-domain and photoluminescence spectroscopy. The nanocomposites consist of a free-standing mesoporous silicon membrane with its external and pore surfaces coated with few-layer graphene. Results show a stabilization of the porous silicon morphology by the graphene coating. The terahertz refractive index and absorption coefficient were found to increase with graphene deposition temperature. Four bands in the 1.79-2.2 eV range emerge from the PL spectra of the nanocomposites. The broad bands centered at 1.79 eV and 1.96 eV were demonstrated to originate from Si nanocrystallites of different sizes. The narrower bands at 2.11 eV and 2.14 eV could be related to a thin SiC film at the Si/C interface.

8.
Nat Commun ; 10(1): 4322, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541107

RESUMO

The monolithic integration of III-V compound semiconductor devices with silicon presents physical and technological challenges, linked to the creation of defects during the deposition process. Herein, a new defect elimination strategy in highly mismatched heteroepitaxy is demonstrated to achieve a ultra-low dislocation density, epi-ready Ge/Si virtual substrate on a wafer scale, using a highly scalable process. Dislocations are eliminated from the epilayer through dislocation-selective electrochemical deep etching followed by thermal annealing, which creates nanovoids that attract dislocations, facilitating their subsequent annihilation. The averaged dislocation density is reduced by over three orders of magnitude, from ~108 cm-2 to a lower-limit of ~104 cm-2 for 1.5 µm thick Ge layer. The optical properties indicate a strong enhancement of luminescence efficiency in GaAs grown on this virtual substrate. Collectively, this work demonstrates the promise for transfer of this technology to industrial-scale production of integrated photonic and optoelectronic devices on Si platforms in a cost-effective way.

9.
Nanotechnology ; 29(21): 215701, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29504511

RESUMO

Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10-3) Ω-1 cm-1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10-3 Ω-1 cm-1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

10.
Nanotechnology ; 29(14): 145701, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29388555

RESUMO

We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

11.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296038

RESUMO

The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene-porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect-free new epitaxial semiconductor alloys and devices.

12.
Nanoscale Res Lett ; 11(1): 446, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27704487

RESUMO

We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

13.
Materials (Basel) ; 9(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28773633

RESUMO

We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode's active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots' height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging.

14.
Opt Express ; 23(17): 22477-93, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368216

RESUMO

We have experimentally demonstrated broadband tuneable four-wave mixing in AlGaAs nanowires with the widths ranging between 400 and 650 nm and lengths from 0 to 2 mm. We performed a detailed experimental study of the parameters influencing the FWM performance in these devices (experimental conditions and nanowire dimensions). The maximum signal-to-idler conversion range was 100 nm, limited by the tuning range of the pump source. The maximum conversion efficiency, defined as the ratio of the output idler power to the output signal power, was -38 dB. In support of our explanation of the experimentally observed trends, we present modal analysis and group velocity dispersion numerical analysis. This study is what we believe to be a step forward towards realization of all-optical signal processing devices.

15.
Nanotechnology ; 21(13): 134014, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20208121

RESUMO

Semiconductor nanowaveguides are the key structure for light-guiding nanophotonics applications. Efficient guiding and confinement of single-mode light in these waveguides require high aspect ratio geometries. In these conditions, sidewall verticality becomes crucial. We fabricated such structures using a top-down process combining electron beam lithography and inductively coupled plasma (ICP) etching of hard masks and GaAs/AlGaAs semiconductors with Al concentrations varying from 0 to 100%. The GaAs/AlGaAs plasma etching was a single-step process using a Cl(2)/BCl(3)/Ar gas mixture with various fractions of N(2). Scanning electron microscope (SEM) observations showed that the presence of nitrogen generated the deposition of a passivation layer, which had a significant effect on sidewall slope. Near-ideal vertical sidewalls were obtained over a very narrow range of N(2), allowing the production of extremely high aspect ratios (>32) for 80 nm wide nanowaveguides.

16.
Opt Express ; 17(22): 19842-7, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19997205

RESUMO

We report on the application of a laser rapid thermal annealing technique for iterative bandgap engineering at selected areas of quantum semiconductor wafers. The approach takes advantage of the quantum well intermixing (QWI) effect for achieving targeted values of the bandgap in a series of small annealing steps. Each QWI step is monitored by collecting a photoluminescence map and, consequently, choosing the annealing strategy of the next step. An array of eight sites, 280 mum in diameter, each emitting at 1480 nm, has been fabricated with a spectral accuracy of better than 2 nm in a standard InGaAs/InGaAsP QW heterostructure that originally emitted at 1550 nm.


Assuntos
Lasers , Semicondutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teoria Quântica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Opt Express ; 15(8): 4663-70, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19532711

RESUMO

We have studied theoretically and experimentally the properties of optical surface modes at the hetero-interface between two meta-materials. These meta-materials consisted of two 1D AlGaAs waveguide arrays with different band structures.

18.
Opt Express ; 15(19): 12068-75, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19547571

RESUMO

We demonstrate a technique for a single shot mapping of nonlinear phase shift profiles in spatial solitons that are formed during short pulse propagation through one-dimensional slab AlGaAs waveguides, in the presence of a focusing Kerr nonlinearity. The technique uses a single beam and relies on the introduction of a lithographically etched reflective planar mirror surface positioned in proximity to the beam's input position. Using this setup we demonstrate nonlinearity-induced sharp lateral phase variations for certain initial conditions, and creation of higher spatial harmonics when the beam is in close proximity to the mirror.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...