Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390838

RESUMO

The term cancer is used to describe a complex pathology characterized by the uncontrollable proliferation of cells, which displays a fast metastatic spread, being a disease with difficult treatment. In this context, Phosphatidylinositol 3-kinase (PI3K) represents a promising pathway to be inhibited, aiming to develop anticancer agents, since it performs a pivotal role in regulating essential cellular processes, including cell proliferation, growth, autophagy, and apoptosis. In parallel, natural compounds can effectively represent a therapeutic strategy to fight against malignant cells. Then, compounds derived from various plant sources, such as flavonoids, terpenoids, alkaloids, coumarins, and lignans, have exhibited remarkable in vitro and in vivo anticancer properties. This review focused in the exploration of natural products targeting the PI3K/AKT/m-TOR signaling pathway, demonstrating that these compounds could even further investigated to reveal novel and effective anticancer drugs in the future.

2.
Genet Med ; : 101291, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39394881

RESUMO

PURPOSE: Ceroid lipofuscinosis type 11 (CLN11) is a very rare disease, being reported in only 13 unrelated families so far. Further reports are necessary to comprehend the clinical phenotype of this condition. This article aims to report nine additional cases of CLN11 from nine unrelated Latin American families presenting with relatively slow disease progression. METHODS: This was a retrospective observational study including patients with CLN11. Patients were identified through an active search for GRN pathogenic variants across the entire database of next-generation sequencing (NGS) of a commercial laboratory and by contacting attending physicians to check for clinical and radiologic findings compatible with a neuronal ceroid lipofuscinosis phenotype. RESULTS: Nine CLN11 patients from unrelated families were evaluated. Age of onset varied between 3 to 17 years. The most common findings were visual impairment, cerebellar ataxia, seizures, myoclonus and cognitive decline. One patient had a previously unreported finding of cervical, perioral and tongue myoclonus. Most of the patients were able to walk unassisted after an average of 14.2 years (SD 4.76y) from disease onset. CONCLUSION: We describe nine new cases of a very rare type of neuronal ceroid lipofuscinosis (CLN11) from Latin America with a recurrent p.(Gln257ProfsTer27) and a novel p.(Cys83Ter) nonsense variant. Our findings suggest that a slowly progressive NCL might be a clue for the diagnosis of CLN11.

3.
Nat Prod Res ; : 1-12, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257335

RESUMO

Leishmaniasis is a group of neglected, vector-borne infectious diseases that affect millions of people around the world. The medications available for its treatment, especially in cases of visceral leishmaniasis, are old, outdated and have serious side effects. In this work, 10 chalcones were synthesised and evaluated in vitro against promastigotes and axenic amastigotes of Leishmania infantum. Compounds CP04 and CP06 were the most promising, respectively presenting IC50 values = 13.64 ± 0.25 and 11.19 ± 0.22 µM against promastigotes, and IC50 = 18.92 ± 0.05 and 22.42 ± 0.05 µM against axenic amastigotes. Only compound CP04 did not show cytotoxicity against peripheral blood mononuclear cells (PBMCs). Molecular docking studies conducted with sterol 14-alpha demethylase (CYP-51) (PDB: 3L4D) and trypanothione reductase (PDB: 5EBK) enzymes from L. infantum evidenced the great affinity of compound CP04 for these targets, presenting Moldock score values of -94.0758 and -50.5692 KJ/mol-1.

4.
Curr Top Med Chem ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39301898

RESUMO

A stroke, also known as a cerebral hemorrhage, occurs when there is an interruption in the blood supply to a part of the brain, resulting in damage to brain cells. This issue is one of the leading causes of death in developed countries, currently killing about 5 million people annually. Individuals who survive ischemic stroke often face serious vision problems, paralysis, dementia, and other sequelae. The numerous efforts to prevent and/or treat stroke sequelae seem insufficient, which is concerning given the increasing global elderly population and the well-known association between aging and stroke risk. In this review, we aim to present and discuss the importance of vitamins in stroke prevention and/or incidence. Vitamins from diet or dietary supplements influence the body at various levels; they are a relevant factor but are reported only in isolated articles. This review reports and updates the multitarget role of vitamins involved in reducing stroke risk.

5.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982292

RESUMO

Cancer represents the main cause of morbidity and mortality worldwide, constituting a serious health problem. In this context, melanoma represents the most aggressive and fatal type of skin cancer, with death rates increasing every year. Scientific efforts have been addressed to the development of inhibitors targeting the tyrosinase enzyme as potential anti-melanoma agents due to the importance of this enzyme in melanogenesis biosynthesis. Coumarin-based compounds have shown potential activity as anti-melanoma agents and tyrosinase inhibitors. In this study, coumarin-based derivatives were designed, synthesized, and experimentally evaluated upon tyrosinase. Compound FN-19, a coumarin-thiosemicarbazone analog, exhibited potent anti-tyrosinase activity, with an IC50 value of 42.16 ± 5.16 µM, being more active than ascorbic acid and kojic acid, both reference inhibitors. The kinetic study showed that FN-19 acts as a mixed inhibitor. Still, for this compound, molecular dynamics (MD) simulations were performed to determine the stability of the complex with tyrosinase, generating RMSD, RMSF, and interaction plots. Additionally, docking studies were performed to elucidate the binding pose at the tyrosinase, suggesting that the hydroxyl group of coumarin derivative performs coordinate bonds (bidentate) with the copper(II) ions at distances ranging from 2.09 to 2.61 Å. Then, MM/PBSA calculations revealed that van der Waals interactions are the most relevant intermolecular forces for complex stabilization. Furthermore, it was observed that FN-19 has a binding energy (ΔEMM) value similar to tropolone, a tyrosinase inhibitor. Therefore, the data obtained in this study will be useful for designing and developing novel coumarin-based analogs targeting the tyrosinase enzyme.


Assuntos
Cumarínicos , Inibidores Enzimáticos , Melanoma , Monofenol Mono-Oxigenase , Tirosina 3-Mono-Oxigenase , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Relação Estrutura-Atividade , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores
6.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056161

RESUMO

A series of coumarin derivatives and isosteres were synthesized from the reaction of triflic intermediates with phenylboronic acids, terminal alkynes, and organozinc compounds through palladium-catalyzed cross-coupling reactions. The in vitro cytotoxic effect of the compounds was evaluated against two non-small cell lung carcinoma (NSCLC) cell lines (A-549 and H2170) and a normal cell line (NIH-3T3) using cisplatin as a reference drug. Additionally, the effects of the most promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition (EMT) in IL-1ß-stimulated A549 cells and in inhibiting the EMT-associated migratory ability in A549 cells were also evaluated. 9f had the greatest cytotoxic effect (CC50 = 7.1 ± 0.8 and 3.3 ± 0.5 µM, respectively against A549 and H2170 cells) and CC50 value of 25.8 µM for NIH-3T3 cells. 9f inhibited the IL-1ß-induced EMT in epithelial cells by inhibiting the F-actin reorganization, attenuating changes in the actin cytoskeleton reorganization, and downregulating vimentin in A549 cells stimulated by IL-1ß. Treatment of A549 cells with 9f at 7 µM for 24 h significantly reduced the migration of IL-1ß-stimulated cells, which is a phenomenon confirmed by qualitative assessment of the wound closure. Taken together, our findings suggest that coumarin derivatives, especially compound 9f, may become a promising candidate for lung cancer therapy, especially in lung cancer promoted by NSCLC cell lines.

7.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34358118

RESUMO

Rheumatoid arthritis, arthrosis and gout, among other chronic inflammatory diseases are public health problems and represent major therapeutic challenges. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed clinical treatments, despite their severe side effects and their exclusive action in improving symptoms, without effectively promoting the cure. However, recent advances in the fields of pharmacology, medicinal chemistry, and chemoinformatics have provided valuable information and opportunities for development of new anti-inflammatory drug candidates. For drug design and discovery, thiophene derivatives are privileged structures. Thiophene-based compounds, like the commercial drugs Tinoridine and Tiaprofenic acid, are known for their anti-inflammatory properties. The present review provides an update on the role of thiophene-based derivatives in inflammation. Studies on mechanisms of action, interactions with receptors (especially against cyclooxygenase (COX) and lipoxygenase (LOX)), and structure-activity relationships are also presented and discussed. The results demonstrate the importance of thiophene-based compounds as privileged structures for the design and discovery of novel anti-inflammatory agents. The studies reveal important structural characteristics. The presence of carboxylic acids, esters, amines, and amides, as well as methyl and methoxy groups, has been frequently described, and highlights the importance of these groups for anti-inflammatory activity and biological target recognition, especially for inhibition of COX and LOX enzymes.

8.
Eur J Pharmacol ; 887: 173525, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889064

RESUMO

Coumarins exhibit a wide variety of biological effects, including activities in the cardiovascular system and the aim of this study was to evaluate the vascular therapeutic potential of 7-Hydroxicoumarin (7-HC). The vascular effects induced by 7-HC (0.001 µM-300 µM), were investigated by in vitro approaches using isometric tension measurements in rat superior mesenteric arteries and by in silico assays using Ligand-based analysis. Our results suggest that the vasorelaxant effect of 7-HC seems to rely on potassium channels, notably through large conductance Ca2+-activated K+ (BKCa) channels activation. In fact, 7-HC (300 µM) significantly reduced CaCl2-induced contraction as well as the reduction of intracellular calcium mobilization. However, the relaxation induced by 7-HC was independent of store-operated calcium entry (SOCE). Moreover, in silico analysis suggests that potassium channels have a common binding pocket, where 7-HC may bind and hint that its binding profile is more similar to quinine's than verapamil's. These results are compatible with the inhibition of Ca2+ release from intracellular stores, which is prompted by phenylephrine and caffeine. Taken together, these results demonstrate a therapeutic potential of 7-HC on the cardiovascular system, making it a promising lead compound for the development of drugs useful in the treatment of cardiovascular diseases.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Artérias Mesentéricas/efeitos dos fármacos , Umbeliferonas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Masculino , Artérias Mesentéricas/fisiologia , Técnicas de Cultura de Órgãos , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Vasodilatação/fisiologia
9.
Curr Top Med Chem ; 20(19): 1677-1703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32515312

RESUMO

Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Desenho Assistido por Computador , Cumarínicos/farmacologia , Flavonoides/farmacologia , Neoplasias/tratamento farmacológico , Alcaloides/química , Alcaloides/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Cumarínicos/química , Cumarínicos/metabolismo , Desenho de Fármacos , Flavonoides/química , Flavonoides/metabolismo , Humanos , Estrutura Molecular
10.
Curr Top Med Chem ; 20(19): 1704-1719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32543360

RESUMO

BACKGROUND: Chemoinformatics has several applications in the field of drug design, helping to identify new compounds against a range of ailments. Among these are Leishmaniasis, effective treatments for which are currently limited. OBJECTIVE: To construct new indole 2-aminothiophene molecules using computational tools and to test their effectiveness against Leishmania amazonensis (sp.). METHODS: Based on the chemical structure of thiophene-indol hybrids, we built regression models and performed molecular docking, and used these data as bases for design of 92 new molecules with predicted pIC50 and molecular docking. Among these, six compounds were selected for the synthesis and to perform biological assays (leishmanicidal activity and cytotoxicity). RESULTS: The prediction models and docking allowed inference of characteristics that could have positive influences on the leishmanicidal activity of the planned compounds. Six compounds were synthesized, one-third of which showed promising antileishmanial activities, with IC50 ranging from 2.16 and 2.97 µM (against promastigote forms) and 0.9 and 1.71 µM (against amastigote forms), with selectivity indexes (SI) of 52 and 75. CONCLUSION: These results demonstrate the ability of Quantitative Structure-Activity Relationship (QSAR)-based rational drug design to predict molecules with promising leishmanicidal potential, and confirming the potential of thiophene-indole hybrids as potential new leishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Tiofenos/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Tiofenos/química
11.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1701-1714, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388599

RESUMO

Cancer is one of the most urgent problems in medicine. In recent years, cancer is the second leading cause of death globally. In search for more effective and less toxic treatment against cancer, natural products are used as prototypes in the synthesis of new anticancer drugs. The aim of this study was to investigate the in vivo toxicity and the mechanism of antitumor action of 7-isopentenyloxycoumarin (UMB-07), a coumarin derivative with antitumor activity. The toxicity was evaluated in vitro (hemolysis assay), and in vivo (micronucleus and acute toxicity assays). Ehrlich ascites carcinoma model was used to evaluate in vivo antitumor activity of UMB-07 (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.), after 9 days of treatment, as well as toxicity. UMB-07 (2000 µg/mL) induced only 0.8% of hemolysis in peripheral blood erythrocytes of mice. On acute toxicity assay, LD50 (50% lethal dose) was estimated at around 1000 mg/kg (i.p.), and no micronucleated erythrocytes were recorded after UMB-07 (300 mg/kg, i.p.) treatment. UMB-07 (25 and 50 mg/kg) reduced tumor volume and total viable cancer cells. In the mechanism action investigation, no changes were observed on the cell cycle analysis; however, UMB-07 reduced peritumoral microvessels density and CCL2 chemokine levels. In addition, UMB-07 showed weak toxicity on biochemical, hematological, and histological parameters after 9 days of antitumor treatment. The current findings suggest that UMB-07 has low toxicity and exerts antitumor effect by inhibit angiogenesis via CCL2 chemokine decrease.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Quimiocina CCL2/metabolismo , Cumarínicos/farmacologia , Neovascularização Patológica , Animais , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Regulação para Baixo , Feminino , Camundongos , Densidade Microvascular/efeitos dos fármacos , Transdução de Sinais , Microambiente Tumoral
12.
Curr Med Chem ; 27(5): 795-834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31296154

RESUMO

Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated with poverty, flourish in impoverished environments, and thrive best in tropical areas, where they tend to present overlap. They comprise several diseases, and the symptoms vary dramatically from disease to disease, often causing from extreme pain, and untold misery that anchors populations to poverty, permanent disability, and death. They affect more than 1 billion people worldwide; mostly in poor populations living in tropical and subtropical climates. In this review, several complementary in silico approaches are presented; including identification of new therapeutic targets, novel mechanisms of activity, high-throughput screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship and recent molecular docking studies. Current and active research against Sleeping Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully lead to safer, more effective, less costly and more widely available treatments against these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.


Assuntos
Doença de Chagas , Leishmaniose , Doenças Negligenciadas , Tripanossomíase Africana , Animais , Simulação de Acoplamento Molecular
13.
Oxid Med Cell Longev ; 2019: 6587150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881596

RESUMO

The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.


Assuntos
Arbovírus/patogenicidade , Doenças Negligenciadas/terapia , Óleos Voláteis/uso terapêutico , Animais , Óleos Voláteis/farmacologia
14.
Curr Top Med Chem ; 18(1): 42-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29412107

RESUMO

The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as ß-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Animais , Antibacterianos/química , Bactérias/enzimologia , Bactérias/patogenicidade , Biofilmes/efeitos dos fármacos , Humanos
15.
J Inorg Biochem ; 180: 80-88, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247870

RESUMO

A series of organotin(IV) derivatives was investigated in vitro for their antibiotic and adjuvant antibiotic properties (efflux pump inhibitors) against Staphylococcus aureus strains that overexpress efflux pump proteins for norfloxacin (SA-1199B), erythromycin (RN-4220) and tetracycline (IS-58). Most organotin(IV) compounds showed significant antibacterial activity with small Minimum Inhibitory Concentration (MIC) values, some of which were close to 1.0µg/mL (3.1µM), but this feature was also associated with substantial cytotoxicity. Nevertheless, the cytotoxicity of these organotin(IV) compounds can be overcome when they are used as antibiotic adjuvants. Their remarkable adjuvant antibiotic properties allow potentiation of the action of tetracycline (against IS-58 strain) by up to 128-fold. This likely indicates that they can act as putative inhibitors of bacterial efflux pumps. These results reinforce organotin(IV) complexes as promising antibacterial agents, and many of these complexes, if associated with antibiotics, can act as potential adjuvant antibiotic candidates.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/farmacologia , Animais , Antibacterianos/química , Linhagem Celular , Camundongos , Testes de Sensibilidade Microbiana , Compostos Orgânicos de Estanho/química , Staphylococcus aureus/efeitos dos fármacos , Tetraciclinas/farmacologia
16.
Scientifica (Cairo) ; 2016: 6894758, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200211

RESUMO

Semisynthetic and commercial coumarins were investigated for their antibacterial and adjuvant properties with antibiotic agents against norfloxacin, erythromycin, and tetracycline resistant Staphylococcus aureus as based on efflux mechanisms. The coumarins and certain commercial antibiotics had their Minimum Inhibitory Concentrations determined by broth microdilution assay against resistant S. aureus strains which overexpress efflux pump proteins. For evaluation of the modulatory activity, the antibiotics MICs were determined in the presence of the coumarin derivatives at subinhibitory concentration. Although the coumarins did not display relevant antibacterial activity (MIC ≥ 128 µg/mL), they did modulate the antibiotics activities. Various coumarins, especially the alkylated derivatives in combination with antibiotics at subinhibitory concentrations, modulated antibiotic activity, reducing the MIC for tetracycline and norfloxacin by 2 to 8 times. Polar Surface Area (PSA) studies were performed and the fact that the presence of apolar groups is an important factor for the modulatory activity of coumarins was corroborated. Docking on the Penicillin-Binding Protein from MRSA identified that 18 is a potential ligand presenting low E binding. The results indicate that coumarin derivatives modulated antibiotic resistance and may be used as potential antibiotic adjuvants, acting by bacterial efflux pump inhibition in S. aureus.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26175794

RESUMO

Aspergillus spp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action against Aspergillus spp. Cou-NO2 was tested to evaluate its effects on mycelia growth and germination of fungal conidia of Aspergillus spp. We also investigated possible Cou-NO2 action on cell walls (0.8 M sorbitol) and on Cou-NO2 to ergosterol binding in the cell membrane. The study shows that Cou-NO2 is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2 enhanced the in vitro effects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2 displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent against Aspergillus species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA