Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447125

RESUMO

The in-situ quantification of turbulent flux and evapotranspiration (ET) is necessary to monitor crop performance in stressful environments. Although cacti can withstand stressful conditions, plant responses and plant-environment interactions remain unclear. Hence, the objective of our study was to investigate the interannual and seasonal behaviour of components of the surface energy balance, environmental conditions, morphophysiological parameters, biomass yield and water relations in a crop of Nopalea cochenillifera in the semi-arid region of Brazil. The data were collected from a micrometeorological tower between 2015 and 2017. The results demonstrate that net radiation was significantly higher during the wet season. Latent heat flux was not significant between the wet season and dry season. During the dry-wet transition season in particular, sensible heat flux was higher than during the other seasons. We observed a large decline in soil heat flux during the wet season. There was no difference in ET during the wet or dry seasons; however, there was a 40% reduction during the dry-wet transition. The wet seasons and wet-dry transition showed the lowest Evaporative Stress Index. The plants showed high cladode water content and biomass during the evaluation period. In conclusion, these findings indicate high rates of growth, high biomass and a high cladode water content and explain the response of the cactus regarding energy partitioning and ET.

2.
Sci Total Environ ; 895: 165102, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356760

RESUMO

Some strategies can optimise the use of water in crops under deficit, either by increasing yield or by reducing actual crop evapotranspiration (ET), to promote the sustainable intensification of production systems. The objective was to evaluate how the spacing, planting orientation, nitrogen fertilisation and intercropping strategies impact the dynamics of water in the soil, ET partitioning, and water use indicators for forage cactus and cactus-sorghum intercropping. Four experiments were conducted between 2018 and 2020 in the Brazilian semi-arid region. In the first two sites (I and II), the cladodes of the intercropped forage cactus and sorghum were spaced at 0.10, 0.20, 0.30, 0.40 and 0.50 m with rows-oriented east-west and north-south. In site III, the intercropped rows were spaced at 1.00, 1.25, 1.50 and 1.75 m. Site IV, which contained the forage cactus crop exclusively, was treated with four nitrogen levels (50, 150, 300 and 450 kg N ha-1). The management interventions improved water use more by increasing dry matter than by reducing ET in the cropping system. Intercropping promoted the greatest increase in water productivity (130 %). Increasing N doses in the forage cactus-only crop reduced ET by up to 39 % but increased deep drainage losses by up to 365 %. The most promising management practices for optimising water resources were as follows: spacing of 0.10 m between cactus plants in the intercropping trial under east-west row orientation, as it promoted greater water use efficiency (76 %); spacing of 0.30 m in the north-south orientation; and row spacing of 1.50 m, as it improved water productivity (6.89 kg m-3). Thus, interventions in management should be adopted to optimise water use in intercropping systems with forage cactus, aiming at sustainable intensification in dry environments.


Assuntos
Agricultura , Sorghum , Água , Nitrogênio , Zea mays , Grão Comestível , Fertilização
3.
Plant Physiol Biochem ; 162: 421-430, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740681

RESUMO

Plants with the crassulacean acid metabolism commonly present good adaptation to arid and semi-arid environments, but it highly depends on the type of species. In this study, chlorophyll fluorescence, the concentration of inorganic and organic solutes and the productive performance were evaluated along with their relationships in different clones of the genera Opuntia and Nopalea. The experiment was conducted from 2016 to 2018. Four clones of genus Opuntia were evaluated: 'Orelha de Elefante Mexicana' (OEM), 'Orelha de Elefante Africana' (OEA), V19 and F8; and two clones of genus Nopalea: 'IPA Sertânia' and 'Miúda'. The experiment was arranged in a randomised block design, with six treatments and three replications. The following parameters were measured when harvesting: initial, maximum and variable fluorescence; the quantum yield of PSII (Fv/Fm); light-induction curves of the photochemical parameters (ΔF/Fm', qP, NPQ and ETR); the chlorophyll and carotenoid content; carbohydrates; the sodium (Na+) and potassium (K+) content; morphometry; and dry matter accumulation. The values for the effective quantum yield of PSII (ΔF/Fm') and the alterations in photochemical quenching were higher in the OEM clone (P < 0.05). There was a difference between clones for non-photochemical quenching, with the F8 clone having the highest values. The Fv/Fm was 0.87 for the OEM. 'IPA Sertânia' obtained the greatest Chl a/b, and the highest values for carbohydrate concentration were found in the OEA clone. The OEM clone showed the greatest accumulation of K+, in addition to a higher cladode area index and greater dry matter accumulation. The results of this study show the high physiological tolerance of the forage cactus to a semi-arid environment, which varies according to the clone.


Assuntos
Cactaceae , Aclimatação , Cactaceae/genética , Clorofila , Células Clonais , Fluorescência , Fotossíntese , Complexo de Proteína do Fotossistema II , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...