Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(27): 23380-23392, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847306

RESUMO

We observed our newly developed tetrahydro-1,2,4-triazines, including triazene moieties (THTA), namely, 6-((1E)-1-((2E)-(4-(((Z)-1-(2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazin-5-yl) ethylidene) triaz-1-en-1-yl)piperazin-1-yl) triaz-2-en-1-ylidene) ethyl)-2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazine (THTA-I), and 1-((E)-((E)-1-(2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl) ethylidene) triaz-1-en-1-yl) naphthalen-2-ol (THTA-II), as effective inhibitors for the corrosion protection of N80 carbon steel metal in 5% sulfamic acid as the corrosive medium via electrochemical approaches such as potentiodynamic polarization and electrochemical impedance spectroscopy. Furthermore, the tested steel exterior was monitored using X-ray photoelectron spectroscopy after the treatment with the investigated components to verify the establishment of the adsorbed shielding film. The investigated compounds acted as mixed-type inhibitors, as shown by Tafel diagrams. The compounds considered obey the Langmuir adsorption isotherm, and their adsorption on the steel surface was chemisorption. When the tested inhibitors were added, the double-layer capacitances, which can be determined by the adsorption of the tested inhibitors on N80 steel specimens, decreased compared with that of the blank solution. At 10-4 M, the inhibitory efficacy of THTA-I and THTA-II achieved maximum values of 88.5 and 86.5%, respectively. Density-functional theory computations and Monte-Carlo simulation were applied to determine the adsorption attributes and inhibition mechanism through the studied components. Furthermore, the investigated inhibitors were considered to adsorb on the Fe (1 1 0) surface. The adsorption energy was then measured on steel specimens.

2.
J Neurochem ; 158(3): 779-797, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107061

RESUMO

Clinical diagnosis of Parkinson's disease (PD) occurs typically when a substantial proportion of dopaminergic neurons in the substantia nigra (SN) already died, and the first motor symptoms appear. Therefore, tools enabling the early diagnosis of PD are essential to identify early-stage PD patients in which neuroprotective treatments could have a significant impact. Here, we test the utility and sensitivity of the diffusion kurtosis imaging (DKI) in detecting progressive microstructural changes in several brain regions of mice exposed to chronic intragastric administration of rotenone, a mouse model that mimics the spatiotemporal progression of PD-like pathology from the ENS to the SN as described by Braak's staging. Our results show that DKI, especially kurtosis, can detect the progression of pathology-associated changes throughout the CNS. Increases in mean kurtosis were first observed in the dorsal motor nucleus of the vagus (DMV) after 2 months of exposure to rotenone and before the loss of dopaminergic neurons in the SN occurred. Remarkably, we also show that limited exposure to rotenone for 2 months is enough to trigger the progression of the disease in the absence of the environmental toxin, thus suggesting that once the first pathological changes in one region appear, they can self-perpetuate and progress within the CNS. Overall, our results show that DKI can be a useful radiological marker for the early detection and monitoring of PD pathology progression in patients with the potential to improve the clinical diagnosis and the development of neuroprotective treatments.


Assuntos
Imagem de Tensor de Difusão/métodos , Progressão da Doença , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Rotenona/toxicidade , Administração Oral , Animais , Inseticidas/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Rotenona/administração & dosagem , Fatores de Tempo
3.
Neurotox Res ; 36(4): 724-735, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31209787

RESUMO

Methamphetamine (METH) abuse is known to increase the risk of Parkinson's disease (PD) due to its dopaminergic neurotoxicity. This is the rationale for the METH model of PD developed by toxic METH dosing (10 mg/kg four times every 2 h) which features robust neurodegeneration and typical motor impairment in mice. In this study, we used diffusion kurtosis imaging to reveal microstructural brain changes caused by METH-induced neurodegeneration. The METH-treated mice and saline-treated controls underwent diffusion kurtosis imaging scanning using the Bruker Avance 9.4 Tesla MRI system at two time-points: 5 days and 1 month to capture both early and late changes induced by METH. At 5 days, we found a decrease in kurtosis in substantia nigra, striatum and sensorimotor cortex, which is likely to indicate loss of DAergic neurons. At 1 month, we found an increase of kurtosis in striatum and sensorimotor cortex and hippocampus, which may reflect certain recovery processes. Furthermore, we performed tract-based spatial statistics analysis in the white matter and at 1 month, we observed increased kurtosis in ventral nucleus of the lateral lemniscus and some of the lateral thalamic nuclei. No changes were present at the early stage. This study confirms the ability of diffusion kurtosis imaging to detect microstructural pathological processes in both grey and white matter in the METH model of PD. The exact mechanisms underlying the kurtosis changes remain to be elucidated but kurtosis seems to be a valuable biomarker for tracking microstructural brain changes in PD and potentially other neurodegenerative disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Dopaminérgicos/toxicidade , Metanfetamina/toxicidade , Doença de Parkinson Secundária/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson Secundária/diagnóstico por imagem
4.
Brain Res Bull ; 139: 91-98, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29378223

RESUMO

Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Animais , Diagnóstico Precoce , Humanos , Processamento de Imagem Assistida por Computador
5.
Brain Behav Immun ; 61: 197-208, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27923670

RESUMO

Diffusion kurtosis imaging (DKI) is sensitive in detecting α-Synuclein (α-Syn) accumulation-associated microstructural changes at late stages of the pathology in α-Syn overexpressing TNWT-61 mice. The aim of this study was to perform DKI in young TNWT-61 mice when α-Syn starts to accumulate and to compare the imaging results with an analysis of motor and memory impairment and α-Syn levels. Three-month-old (3mo) and six-month-old (6mo) mice underwent DKI scanning using the Bruker Avance 9.4T magnetic resonance imaging system. Region of interest (ROI) analyses were performed in the gray matter; tract-based spatial statistics (TBSS) analyses were performed in the white matter. In the same mice, α-Syn expression was evaluated using quantitative immunofluorescence. Mean kurtosis (MK) was the best differentiator between TNWT-61 mice and wildtype (WT) mice. We found increases in MK in 3mo TNWT-61 mice in the striatum and thalamus but not in the substantia nigra (SN), hippocampus, or sensorimotor cortex, even though the immunoreactivity of human α-Syn was similar or even higher in the latter regions. Increases in MK in the SN were detected in 6mo mice. These findings indicate that α-Syn accumulation-associated changes may start in areas with a high density of dopaminergic nerve terminals. We also found TBSS changes in white matter only at 6mo, suggesting α-Syn accumulation-associated changes start in the gray matter and later progress to the white matter. MK is able to detect microstructural changes induced by α-Syn overexpression in TNWT-61 mice and could be a useful clinical tool for detecting early-stage Parkinson's disease in human patients.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Memória/fisiologia , Doença de Parkinson/diagnóstico por imagem , alfa-Sinucleína/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Atividade Motora/fisiologia , Destreza Motora/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
6.
J Neurochem ; 136(6): 1259-1269, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685006

RESUMO

Diffusion kurtosis imaging (DKI) by measuring non-Gaussian diffusion allows an accurate estimation of the distribution of water molecule displacement and may correctly characterize microstructural brain changes caused by neurodegeneration. The aim of this study was to evaluate the ability of DKI to detect changes induced by α-synuclein (α-syn) accumulation in α-syn over-expressing transgenic mice (TNWT-61) in both gray matter (GM) and white matter (WM) using region of interest (ROI) and tract-based spatial statistics analyses, respectively, and to explore the relationship between α-syn accumulation and DKI metrics in our regions of interest. Fourteen-month-old TNWT-61 mice and wild-type (WT) littermates underwent in vivo DKI scanning using the Bruker Avance 9.4 Tesla magnetic resonance imaging system. ROI analysis in the GM regions substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus and tract-based spatial statistics analysis in WM were performed. Immunohistochemistry for α-syn was performed in TNWT-61 mice and correlated with DKI findings. We found increased kurtosis and decreased diffusivity values in GM regions such as the thalamus and sensorimotor cortex, and in WM regions such as the external and internal capsule, mamillothalamic tract, anterior commissure, cingulum, and corpus callosum in TNWT-61 mice as compared to WT mice. Furthermore, we report for the first time that α-syn accumulation is positively correlated with kurtosis and negatively correlated with diffusivity in the thalamus. The study provides evidence of an association between the amount of α-syn and the magnitude of DKI metric changes in the ROIs, with the potential of improving the clinical diagnosis of Parkinson's disease. We propose diffusion kurtosis imaging as a sensitive method for detecting human α-synuclein accumulation-induced changes in brain tissue, which may be reflective of Parkinson disease stage. Boxplots show the averaged mean kurtosis (orange) and mean diffusivity (blue) under the results of the analysis (*p < 0.05) in brains of wild-type (WT) and α-synuclein over-expressing (TNWT-61) mice. This approach might represent a novel biomarker for the early diagnosis of Parkinson's disease. Read the Editorial Highlight for this article on page 1117.

7.
Neurotox Res ; 28(4): 281-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26153486

RESUMO

Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson's disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies.


Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Imagem de Tensor de Difusão/métodos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Doença de Parkinson/metabolismo , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...