Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(14): e2206716, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604987

RESUMO

The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes' unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.


Assuntos
Antibacterianos , Nanoestruturas , Bandagens , Mutação
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330828

RESUMO

When aged below the glass transition temperature, [Formula: see text], the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid-liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid-liquid phase transition temperature ([Formula: see text]) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.

3.
Nano Lett ; 21(4): 1778-1784, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555892

RESUMO

The effect of nanoporous confinement on the glass transition temperature (Tg) strongly depends on the type of porous media. Here, we study the molecular origins of this effect in a molecular glass, N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), highly confined in concave and convex geometries. When confined in controlled pore glass (CPG) with convex pores, TPD's vibrational spectra remained unchanged and two Tg's were observed, consistent with previous studies. In contrast, when confined in silica nanoparticle packings with concave pores, the vibrational peaks were shifted due to more planar conformations and Tg increased, as the pore size was decreased. The strong Tg increases in concave pores indicate significantly slower relaxation dynamics compared to CPG. Given TPD's weak interaction with silica, these effects are entropic in nature and are due to conformational changes at molecular level. The results highlight the role of intramolecular degrees of freedom in the glass transition, which have not been extensively explored.

4.
ACS Appl Mater Interfaces ; 12(34): 38285-38298, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846472

RESUMO

In this work, nanorods with high antibacterial properties were synthesized with silver acetate as the metal source and 2-aminoterephthalic acid as the organic linker and were then embedded into thin-film composite (TFC) membranes to amend their performance as well as to alleviate biofouling. Silver metal-organic framework (Ag-MOF) nanorods with a length smaller than 40 nm were incorporated within the polyamide thin selective layer of the membranes during interfacial polymerization. The interaction of the synthesized nanorods with the polyamide was favored because of the presence of amine-containing functional groups on the nanorod's surface. The results of X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy characterizations proved the presence of Ag-MOF nanorods in the selective layer of thin-film nanocomposite (TFN) membranes. TFN membranes demonstrated improved water permeance, salt selectivity, and superior antibacterial properties. Specifically, the increased hydrophilicity and antibacterial potential of the TFN membranes led to a synergetic effect toward biofouling mitigation. The number of live bacteria attached to the surface of the neat TFC membrane decreased by more than 92% when a low amount of Ag-MOF nanorods (0.2 wt %) was applied. Following contact of the TFN membrane surface with Escherichia coli and Staphylococcus aureus, full inactivation, and degradation of bacteria cells were observed with microscopy, colony-forming unit tests, and disc inhibition zone analyses. This result translated to a negligible amount of the biofilm formed on the active layer. Indeed, the incorporation of Ag-MOF nanorods decreased the metal-ion release rate and therefore provided prolonged antibacterial performance.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Estruturas Metalorgânicas/química , Nanotubos/química , Prata/química , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Nanotubos/toxicidade , Nylons/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 12(32): 36287-36300, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677425

RESUMO

In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.


Assuntos
Antibacterianos/química , Estruturas Metalorgânicas/química , Nylons/química , Prata/química , Incrustação Biológica/prevenção & controle , Escherichia coli/efeitos dos fármacos , Etilenodiaminas/química , Filtração , Imidazóis/química , Membranas Artificiais , Osmose , Permeabilidade , Polímeros/química , Propionatos/química , Sulfonas/química , Propriedades de Superfície , Purificação da Água/métodos
6.
Environ Sci Technol ; 52(9): 5246-5258, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589940

RESUMO

This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.


Assuntos
Anti-Infecciosos , Nanopartículas , Purificação da Água , Membranas Artificiais , Osmose , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Environ Sci Technol ; 51(10): 5511-5522, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28414439

RESUMO

This work investigates the use of a silver-based metal-organic framework (MOF) for mitigating biofouling in forward-osmosis thin-film composite (TFC) membranes. This is the first study of the use of MOFs for biofouling control in membranes. MOF nanocrystals were immobilized in the active layer of the membranes via dispersion in the organic solution used for interfacial polymerization. Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) characterization results showed the presence of the MOF nanocrystals in the active layer of the membranes. The immobilization improved the membrane active layer in terms of hydrophilicity and transport properties without adversely affecting the selectivity. It imparted antibacterial activity to the membranes; the number of live bacteria attached to the membrane surface was over 90% less than that of control membranes. Additionally, the MOF nanocrystals provided biocidal activity that lasted for 6 months. The immobilization improved biofouling resistance in the membranes, whose flux had a decline of 8% after 24 h of operation in biofouling experiments, while that of the control membranes had a greater decline of ∼21%. The better biofouling resistance is due to simultaneous improvement of antiadhesive and antimicrobial properties of the membranes. Fluorescence microscopy and FE-SEM indicated simultaneous improvement in antiadhesive and antimicrobial properties of the TFN membranes, resulting in limited biofilm formation.


Assuntos
Incrustação Biológica , Espectroscopia Fotoeletrônica , Membranas Artificiais , Osmose , Prata
8.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 12): 1734-1738, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980819

RESUMO

The lattice of 5,7,12,14-tetra-hydro-5,14:7,12-bis-([1,2]benzeno)-penta-cene-6,13-dione, C34H20O2, at 173 K has triclinic (P-1) symmetry and crystallizes with four independent half-mol-ecules in the asymmetric unit. Each mol-ecule is generated from a C17H10O substructure through an inversion center at the centroid of the central quinone ring, generating a wide H-shaped mol-ecule, with a dihedral angle between the mean planes of the terminal benzene rings in each of the two symmetry-related pairs over the four mol-ecules of 68.6 (1) (A), 65.5 (4) (B), 62.3 (9) (C), and 65.8 (8)° (D), an average of 65.6 (1)°. This compound has applications in gas-separation membranes constructed from polymers of intrinsic microporosity (PIM). The title compound is a product of a double Diels-Alder reaction between anthracene and p-benzo-quinone followed by de-hydrogenation. It has also been characterized by cyclic voltammetry and rotating disc electrode polarography, FT-IR, high resolution mass spectrometry, elemental analysis, and 1H NMR.

9.
Carbohydr Polym ; 152: 419-432, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516289

RESUMO

Membrane adsorbents have emerged as powerful and attractive tools for the removal of hazardous materials such as dyes and heavy metal ions, mainly in trace amounts, from water resources. Among membrane adsorbents, those prepared from or modified with chitosan biopolymer and its derivatives are cases of interest because of chitosan advantages including biocompatibility, biodegradability, nontoxicity, reactivity, film and fiber forming capacity and favorable hydrophilicity. This review is oriented to provide a framework for better insight into fabrication methods and applications of chitosan-based adsorptive membranes. Critical aspects including thermokinetic analyses of adsorption and regeneration capacity of the membrane adsorbents have been also overviewed. Future of chitosan-based adsorptive membranes might include efforts for the improvement of mechanical stability and reusability and also most targeted application of appropriate copolymers as well as nanostructures in preparing high performance adsorptive membranes.


Assuntos
Quitosana/química , Corantes/química , Membranas Artificiais , Metais Pesados/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...