Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(57): 120085-120102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936036

RESUMO

The accumulation of heavy metal ions in living cells leads to biological damage, which makes the necessity of using new methods to effectively remove heavy metal ions from the environment more vital. In this work, a magnetic modified biochar was prepared under regular air atmosphere and low temperature (220 ºC) and used as a low-cost and green adsorbent for efficient adsorptive removal of cobalt (Co(II)) and Lead (Pb(II)) ions from contaminated waters. The adsorption process was modeled and optimized using CCD-RSM to maximize the removal efficiency of heavy metal ions, as well as was monitored in detail by isotherm, kinetic, and thermodynamic studies. The results show that the Langmuir maximum adsorption capacity of the adsorbent reached 237.92 mg g-1 (single) and 121.23 mg g-1 (binary) for Co(II) and 207.21 mg g-1 (single) and 106.56 mg g-1 (binary) for Pb(II) under the short time of 25 min and solution pH of 6.0. The kinetic studies revealed that the pseudo-first-order model was the best-fitted model to experimental data and indicated that the adsorption process was mostly through chemisorption. Also, thermodynamic studies showed that that adsorptive removal of Co(II)and Pb(II)ions followed an endothermic and spontaneous process. The reusability studies demonstrated that the adsorbent could be successfully regenerated with 5 mL of 0.1 mol L-1 HNO3 solution, and the adsorption efficiency was retaining about 90% after four adsorption-desorption cycles. Also, the results from using real water samples, including drinking water, groundwater, and river water, implied that the synthesized magnetic modified biochar was highly efficient for practical treatment processes. Overall, the results indicated that the proposed magnetic biochar can be considered as a cost-effective and efficient adsorbent for adsorptive removal of heavy metal ions from contaminated waters.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Adsorção , Temperatura , Cinética , Projetos de Pesquisa , Chumbo , Metais Pesados/análise , Termodinâmica , Água , Íons , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Sci Rep ; 12(1): 12381, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858982

RESUMO

The zinc sulfide/copper oxide-carbon nanotube nanocomposite (ZnS/CuO-CNT) was fabricated by using an in-situ hydrothermal synthesis method and was used for simultaneous ultrasound-assisted adsorptive removal of a binary mixture of ponceau 4R (P4R) and tartrazine (TA) acid food dyes from contaminated water. The as-synthesized ZnS/CuO-CNT was described by FESEM, XRD, FTIR, BET, and zeta potential analysis. The results included nested network morphology, high purity with the crystalline structure, oxygen-containing functional groups, mesoporous/micropores texture with cumulate interspace, specific surface area of 106.54 m2 g-1, and zero-point charge (pHzpc) of 5.3. In adsorption experiments, the simultaneous effect of main independent variables, including solution pH, adsorbent dosage, concentration of each dye, temperature, and sonication time on the removal efficiency of dyes was studied systematically using the central composite design (CCD) method based on response surface methodology (RSM). Also, the second-order multivariate equation was presented to determine the relationship between the removal efficiencies of P4R and AT dyes and six independent effective variables. The high correlation coefficient (R2 ≥ 0.99), significant p-value (P < 0.0001), and non-significant lack-of-fit (P > 0.05) showed the high accuracy, and validity of the proposed model to predict the removal efficiency of P4R and TA acid food dyes. The experimental removal efficiency for P4R and TA dyes was found to be 98.45 ± 2.54, and 99.21 ± 2.23, respectively. Also, the Langmuir maximum adsorption capacity for P4R and TA dyes was determined to be 190.1 mg g-1 and 183.5 mg g-1, respectively. Finally, the adsorbent's reusability was tested for six periods and could be reused repeatedly without significant reduction in adsorption performance.


Assuntos
Corantes , Óxido de Zinco , Adsorção , Corantes/química , Cobre , Água
3.
J Hazard Mater ; 429: 128289, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121292

RESUMO

A bio-based ceramic/organic xerogel (BCO-xerogel) was obtained from the combination of sugarcane bagasse ash, polyvinyl alcohol, and pine cone-derived tannin extract, which are abundant, non-toxic, and renewable sources. The as-prepared BCO-xerogel was used as a low-cost green adsorbent for the eliminate of four types of the most widely used antibiotics, including amoxicillin (AMX), tetracycline (TC), cefalexin (CLX), and penicillin G (PEN G) residuals from contaminated water. The simultaneous effects conventional variables including adsorbent dosage, antibiotic concentrations, solution pH, and contact time were studied and optimized by central composite design (CCD) under response surface methodology (RSM). Analysis of variance (ANOVA) was employed as a statistical formula to determine the significance of operating environmental conditions and their interactions with 95% confidence limits. Under optimized conditions, the experimental removal efficiencies for AMX, TC, CLX, and PEN G were 98.78 ± 3.25, 99.12 ± 2.52, 98.02 ± 1.98, and 98.42 ± 2.19, respectively. The adsorption isotherms and kinetics were better fitted with Langmuir and pseudo-second-order models, respectively. Thermodynamic studies showed that the adsorption process was endothermic, spontaneous, and occurred by combination of physical and chemical mechanisms. Also, evaluating the ability of BCO-xerogel to adsorptive removal of AMX, TC, CLX, and PEN G antibiotics in real wastewaters showed about 97.4-98.6% adsorption efficiency in river water and about 67.1-71.3% in three hospital effluents. After the adsorption process, the antibiotic-loaded adsorbent was regenerated by NaOH (0.01 mol L-1), and the reusability tests showed that the removal efficiencies of the antibiotics in the four recovery steps were still above 90%. This work explored the development of green, efficient, and economical bio-adsorbent that can be utilized for the removal of antibiotics from contaminated wastewaters.


Assuntos
Preparações Farmacêuticas , Saccharum , Poluentes Químicos da Água , Adsorção , Antibacterianos , Celulose , Cerâmica , Concentração de Íons de Hidrogênio , Cinética , Águas Residuárias/análise , Poluentes Químicos da Água/análise
4.
Sci Rep ; 11(1): 22751, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815470

RESUMO

In this research, mesoporous calcium aluminate nanostructures (meso-CaAl2O4) were synthesized using a citric acid-assisted sol-gel auto-combustion process as the potential adsorbent to eliminate toxic triphenylmethane dye malachite green (MG) from synthetic/real effluent. The surface morphology of meso-CaAl2O4 was highly porous with nanometric size and non-homogeneous surface. The specific surface area, total pore volume, and BJH pore diameter of meso-CaAl2O4 were 148.5 m2 g-1, 1.39 cm3 g-1, and 19 nm, respectively. The meso-CaAl2O4 also showed a very high heat resistance, due to losing only 7.95% of its weight up to 800 °C, which is mainly related to the moisture loss. The optimal adsorption conditions were obtained based on response surface methods (RSM)-central composite design (CCD) techniques. The Langmuir isotherm model was used for fitting the adsorption measurements, which presented 587.5 mg g-1 as the maximum adsorption capacity of the dye. The data obtained from the adsorption kinetics model were found to correspond to the pseudo-second-order model. Also, the thermodynamic parameters including enthalpy change (ΔH°), entropy change (ΔS°), and Gibbs free energy change (ΔG°) indicated that MG dye adsorption by the meso-CaAl2O4 was feasible, endothermic, and occurred spontaneously. Furthermore, the meso-CaAl2O4 was regenerated by microwave irradiation under 900 W at 6 min, and the MG dye removal efficiency was remained over 90% after the five cycles of microwave regeneration.

5.
J Hazard Mater ; 420: 126644, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329103

RESUMO

In this research, the potentiality of magnetic tungsten disulfide/carbon nanotubes nanocomposite (WS2/Fe3O4/CNTs-NC) as an adsorbent for the ultrasound-assisted removal of amaranth (AM) and brilliant blue FCF (BB FCF) dyes was investigated. The experiments were conducted using a central composite design (CCD) with the inputs of solution pH (X1: 2.0-10), adsorbent mass (X4: 4-20 mg), AM concentration (X2: 10-50 mg L-1), BB FCF concentration (X3: 10-50 mg L-1), and sonication time (X5: 2-12 min). At the optimum conditions, the removal percentages of 99.30% and 98.50% were obtained for AM and BB FCF, respectively. The adsorption of the dyes was described by Langmuir isotherm and pseudo-second-order (PSO) kinetic models. The maximum adsorption capacities of AM and BB FCF were 174.8 mg g-1 and 166.7 mg g-1, respectively. The adsorption thermodynamic study showed that the adsorption of the dyes occurred endothermically and spontaneously. The removal percentages of AM and BB FCF from the real samples were in the range of 94.52-99.65% for the binary solutions. The removal percentage for each dye after five cycles of adsorption/desorption was > 90%. This work provides a useful insight to the potential application of CNTs-based magnetic nanocomposite for the treatment of wastewaters contaminated with dyes.


Assuntos
Nanocompostos , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Benzenossulfonatos , Corantes , Dissulfetos , Cinética , Fenômenos Magnéticos , Tungstênio , Poluentes Químicos da Água/análise
6.
Chemosphere ; 271: 129610, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33465623

RESUMO

This study reports on an easy and scalable synthesis method of a novel magnetic nanocomposite (GO/ZIF-8/γ-AlOOH) based on graphene oxide (GO) nanosheets decorated with zeolitic imidazolate framework-8 (ZIF-8), pseudo-boehmite (γ-AlOOH), and iron oxide (Fe3O4) nanoparticles by combining solvothermal and solid-state dispersion (SSD) methods. The nanocomposite was successfully applied to remove of diclofenac sodium (DCF) - a widely used pharmaceutical - from water. Response Surface Methodology (RSM) was used to optimize the adsorption process and assess the interactions among the influencing factors on DCF removal efficiency; including contact time, adsorbent dosage, initial pH, solution temperature, and DCF concentration. Adsorption isotherm results showed a good fitting with the Langmuir isotherm model with an exceptional adsorption capacity value of 2594 mg g-1 at 30 °C, which was highly superior to the previously reported adsorbents. In addition, kinetic and thermodynamic investigations further illustrated that the adsorption process was fast (equilibrium time = 50 min) and endothermic. The regeneration of GO/ZIF-8/γ-AlOOH nanocomposite using acetic acid solution (10% v/v) after a simple magnetic separation was confirmed in five consecutive cycles, which eliminate the usage of organic solvents. The nanocomposite has also shown a superior performance in treating a simulated hospital effluent that contained various pharmaceuticals as well as other organic, and inorganic constituents.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio , Diclofenaco , Grafite , Hospitais , Cinética , Poluentes Químicos da Água/análise
7.
Talanta ; 218: 121131, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797888

RESUMO

In this research, we presented a magnetic dispersive micro-solid phase extraction (MD-µ-SPE) method coupled with high performance liquid chromatography (HPLC) based on the use of magnetic Cu: CuO-Graphene Oxide (GO) nanocomposite (Fe3O4/Cu: CuO/GO-NC) for the separation and preconcentration of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene (Nap), phenanthrene (Phe), anthracene (Ant), and pyrene (Pyr), in vegetable (onion, tomato, carrot, herb, watermelon, lettuce, eggplant, and chili pepper), fruit (apple, watermelon, and grape), wastewater, and water samples. The MD-µ-SPE of PAHs in matrix samples was carried out, and the impacts of pH, ionic strength, extraction time, temperature, eluent volume, and sorbent mass on the recovery of PAHs were investigated by using Placket-Burman design (PBD). In addition, by using the central composite design (CCD), the best combination of each important variable was measured. Sorbent mass of 14 mg, eluent volume of 200 µL, and 12 min extraction time at the central level of other factors were optimal conditions of pretreatment for the highest extraction recovery (ER%) of trace PAHs. Under the optimal conditions, the method proposed herein provided high enrichment factors ranged from 116.51 to 133.05, good linearity in the range of 10-3800 ng mL-1 for Pyr, 3.0-3500 ng mL-1 for Phe, 5.0-3200 ng mL-1 for Nap, and 5.0-3000 ng mL-1 for Ant with coefficient of determination (R2) values between 0.9889 and 0.9963, low limits of detection (LOD) and quantification (LOQ) in the range of 0.015-0.061 and 0.485-2.034 ng mL-1, respectively, and also satisfactory spiked recoveries (between 95.1% and 106.8%) with the relative standard deviations (RSDs) values in the range of 1.73%-5.62%. The Fe3O4/Cu: CuO/GO-NC-based MD-µ-SPE followed by HPLC-UV corroborated promising results for the convenient and effective determination of PAHs in the samples of vegetables, fruits, and environmental water. The results of this study revealed that our developed method is easy, feasible, precise, highly effective, and convenient to operate for the trace analysis of PAHs in different real samples. The extraction recovery was about 90% of the initial recovery after the sorbent usage for three times; therefore, the Fe3O4/Cu: CuO/GO-NC can readily be regenerated.


Assuntos
Nanocompostos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Cromatografia Líquida de Alta Pressão , Cobre , Frutas/química , Grafite , Limite de Detecção , Fenômenos Magnéticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Extração em Fase Sólida , Verduras , Água , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 384: 121394, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31628059

RESUMO

A novel three-dimensional (3D) magnetic bacterial cellulose nanofiber/graphene oxide polymer aerogel (MBCNF/GOPA) composed of bacterial cellulose nanofibers (BCNFs), Fe3O4 nanoparticles, graphene oxide (GO) nano-sheets, and polyvinyl alcohol (PVA) was developed by combining a facile filler-loaded networks method with a vacuum freeze-drying process for the removal of malachite green (MG) dye from aqueous solution. The influence of various factors on adsorption, including initial dye concentration, adsorbent dosage, contact time, temperature, and pH of dye solution, was then investigated. The adsorbent preserved a high adsorption capacity over a wide range of pH conditions. Moreover, the adsorption isotherms data fitted well with the Langmuir isotherm model with a maximum adsorption capacity of 270.27 mg g-1. Adsorption kinetics followed the pseudo-second-order model, and the thermodynamic parameters showed that the adsorption of MG dye was feasible and endothermic in nature and occurred spontaneously. Therefore, owing to its demonstrated properties such as 3D interconnected porous structure, lightweight, large specific surface area, superparamagnetic behavior at room temperature, excellent adsorbent efficiency (93% removal) and also its simple and eco-friendly synthesis process, MBCNF/GOPA could be considered a promising candidate for removing cationic dye pollutants from aqueous solution, which can easily be collected from aqueous solution by a small magnet. MBCNF/GOPA also showed favorable reusability for MG removal in wastewater treatment, and its application in different water samples for the removal of MG dye molecules from "real" samples was successfully performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...