Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6011, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752186

RESUMO

Liquids crystallize as they cool; however, when crystallization is avoided in some way, they supercool, maintaining their liquidity, and freezing into glass at low temperatures, as ubiquitously observed. These metastable states crystallize over time through the classical dynamics of nucleation and growth. However, it was recently found that Coulomb interacting electrons on charge-frustrated triangular lattices exhibit supercooled liquid and glass with quantum nature and they crystallize, raising fundamental issues: what features are universal to crystallization at large and specific to that of quantum systems? Here, we report our experimental challenges that address this issue through the spatiotemporal observation of electronic crystallization in an organic material. With Raman microspectroscopy, we have successfully performed real-space and real-time imaging of electronic crystallization. The results directly capture strongly temperature-dependent crystallization profiles indicating that nucleation and growth proceed at distinctive temperature-dependent rates, which is common to conventional crystallization. However, the growth rate is many orders of magnitude larger than that in the conventional case. The temperature characteristics of nucleation and growth are universal, whereas unusually fast growth kinetics features quantum crystallization where a quantum-to-classical catastrophe occurs in interacting electrons.

2.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33028521

RESUMO

Phase separation often leads to gelation in soft and biomatter. For colloidal suspensions, we have a consensus that gels form by the dynamical arrest of phase separation. In this gelation, percolation of the phase-separated structure occurs before the dynamical arrest, leading to the generation of mechanical stress in the gel network. Here, we find a previously unrecognized type of gelation in dilute colloidal suspensions, in which percolation occurs after the local dynamical arrest, i.e., the formation of mechanically stable, rigid clusters. Thus, topological percolation generates little mechanical stress, and the resulting gel is almost stress-free when formed. We also show that the selection of these two types of gelation (stressed and stress-free) is determined solely by the volume fraction as long as the interaction is short-ranged. This universal classification of gelation of particulate systems may have a substantial impact on material and biological science.

3.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33028533

RESUMO

Meniscus, a curvature of droplet surface around solids, takes critical roles in solution-based thin-film processing. Extension of meniscus shape, and eventual uniform film growth, is strictly limited on highly lyophobic surfaces, although such surface should considerably improve switching characteristics. Here, we demonstrate a technique to control the solution meniscus, allowing to manufacture single-crystalline organic semiconductor (OSC) films on the highest lyophobic amorphous perfluoropolymer, Cytop. We used U-shaped metal film pattern produced on the Cytop surface, to initiate OSC film growth and to keep the meniscus extended on the Cytop surface. The growing edge of the OSC film helped maintain the meniscus extension, leading to a successive film growth. This technique facilitates extremely sharp switching transistors with a subthreshold swing of 63 mV dec-1 owing to the effective elimination of charge traps at the semiconductor/dielectric interface. The technique should expand the capability of print production of functional films and devices.

4.
Chem Sci ; 11(46): 12493-12505, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34976335

RESUMO

The construction and control of 2D layered molecular packing motifs with functionally substituted π-electron cores are crucial for developing organic electronic materials and devices. We investigated a regioisomeric structure-property relationship in high-performance and solution-processable layered organic semiconductors based on mono-octyl-substituted benzothieno[3,2-b]naphtho[2,3-b]thiophene (mono-C8-BTNT). We demonstrated that an isomorphous bilayer-type layered herringbone packing motif is obtainable in a series of four positional isomers of mono-C8-BTNTs whose π-electron core is substituted by an octyl chain at one of the four most peripheral positions with roughly keeping the rod-like molecular shape. These regioisomeric compounds exhibited systematic variations in the solvent solubility and liquid-crystalline phase transitions at elevated temperatures. The analysis of intermolecular interaction energies in the crystals based on dispersion-corrected DFT calculations revealed that the crystals of 2- and 8-mono-C8-BTNTs are more stable than those of 3- and 9-mono-C8-BTNTs owing to the higher ordering of alkyl chain layers in the crystals. Such differences of the stability in their crystal formation are closely correlated with TFT performances, where the single-crystal devices of the 2- and 8-mono-C8-BTNTs substituted at the most peripheral positions exhibit high-performance TFT characteristics with a mobility of approximately 10 cm2 V-1 s-1.

5.
Sci Rep ; 8(1): 6133, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666418

RESUMO

Surface encapsulation of metal nanoparticles (NPs) is fundamental to achieve sufficient dispersion stability of metal nanocolloids, or metal nanoink. However, the feature is incompatible with surface reactive nature of the metal NPs, although these features are both essential to realizing the functional applications into printed electronics technologies. Here we show that two different kinds of encapsulation for silver NPs (AgNPs) by alkylamine and alkylacid together are the key to achieve unique compatibility between the high dispersion stability as dense nanoclolloids and the AgNP chemisorption printing on activated patterned polymer surfaces. Advanced confocal dynamic light scattering study reveals that an additive trace amount of oleic acid is the critical parameter for controlling the dispersion and coagulative (or surface-reactive) characteristics of the silver nanocolloids. The composition of the disperse media is also important for obtaining highly concentrated but low-viscosity silver nanocolloids that show very stable dispersion. The results demonstrate that the high-resolution AgNP chemisorption printing is possible only by using unique silver nanocolloids composed of an exceptional balance of ligand formulation and dispersant composition.

6.
Adv Mater ; 30(23): e1707256, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29691910

RESUMO

A unique solution-based technology to manufacture self-assembled ultrathin organic-semiconductor layers with ultrauniform single-molecular-bilayer thickness over an area as large as wafer scale is developed. A novel concept is adopted in this technique, based upon the idea of geometrical frustration, which can effectively suppress the interlayer stacking (or multilayer crystallization) while maintaining the assembly of the intralayer, which originates from the strong intermolecular interactions between π-conjugated molecules. For this purpose, a mixed solution of extended π-conjugated frameworks substituted asymmetrically by alkyl chains of variable lengths (i.e., (πCore)-Cn 's) is utilized for the solution process. A simple blade-coating with a solution containing two (πCore)-Cn 's with different alkyl chain lengths is effective to provide single molecular bilayers (SMBs) composed of a pair of polar monomolecular layers, which is analogical to the cell membranes of living organisms. It is demonstrated that the chain-length disorder does not perturb the in-plane crystalline order, but acts effectively as a geometrical frustration to inhibit multilayer crystallization. The uniformity, stability, and size scale are unprecedented, as produced by other conventional self-assembly processes. The obtained SMBs also exhibit efficient 2D carrier transport as organic thin-film transistors. This finding should open a new route to SMB-based ultrathin superflexible electronics.

7.
Nat Commun ; 7: 11402, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091238

RESUMO

Silver nanocolloid, a dense suspension of ligand-encapsulated silver nanoparticles, is an important material for printing-based device production technologies. However, printed conductive patterns of sufficiently high quality and resolution for industrial products have not yet been achieved, as the use of conventional printing techniques is severely limiting. Here we report a printing technique to manufacture ultrafine conductive patterns utilizing the exclusive chemisorption phenomenon of weakly encapsulated silver nanoparticles on a photoactivated surface. The process includes masked irradiation of vacuum ultraviolet light on an amorphous perfluorinated polymer layer to photoactivate the surface with pendant carboxylate groups, and subsequent coating of alkylamine-encapsulated silver nanocolloids, which causes amine-carboxylate conversion to trigger the spontaneous formation of a self-fused solid silver layer. The technique can produce silver patterns of submicron fineness adhered strongly to substrates, thus enabling manufacture of flexible transparent conductive sheets. This printing technique could replace conventional vacuum- and photolithography-based device processing.

8.
Int J Mol Sci ; 16(12): 29148-60, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26690133

RESUMO

Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body's internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.


Assuntos
Comunicação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação por Computador , Humanos , Hidrodinâmica , Íons/metabolismo , Modelos Biológicos , Neovascularização Fisiológica , Eletricidade Estática
9.
Eur Phys J E Soft Matter ; 36(6): 63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23797358

RESUMO

When a polymer solution with volatile solvent is exposed to open air, an elastic layer (called a skin) is often formed at the surface of the solution due to evaporation of the solvent. After such a skin is formed, further extraction of the solvent from the solution caused by evaporation has generally been considered to reduce the pressure in the solution. We have found that, in PMMA/acetone droplet placed on a substrate, the liquid below the skin layer is pushed out as the solvent evaporates further. These phenomena indicate that the pressure in the solution increases by solvent evaporation. It is considered to be caused by the shrinkage and other structural changes taking place in the skin layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...