Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1269732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886666

RESUMO

Antibiotic resistance represents one of the greatest threats to global health. The spread of antibiotic resistance genes among bacteria occurs mostly through horizontal gene transfer via conjugation mediated by plasmids. This process implies a direct contact between a donor and a recipient bacterium which acquires the antibiotic resistance genes encoded by the plasmid and, concomitantly, the capacity to transfer the acquired plasmid to a new recipient. Classical assays for the measurement of plasmid transfer frequency (i.e., conjugation frequency) are often characterized by a high variability and, hence, they require many biological and technical replicates to reduce such variability and the accompanying uncertainty. In addition, classical conjugation assays are commonly tedious and time-consuming because they typically involve counting colonies on a large number of plates for the quantification of donors, recipients, and transconjugants (i.e., the bacteria that have received the genetic material by conjugation). Due to the magnitude of the antibiotic resistance problem, it is critical to develop reliable and rapid methods for the quantification of plasmid transfer frequency that allow the simultaneous analysis of many samples. Here, we present the development of a high-throughput, reliable, quick, easy, and cost-effective method to simultaneously accomplish and measure multiple conjugation events in 96-well plates, in which the quantification of donors, recipients, and transconjugants is estimated from the time required to reach a specific threshold value (OD600 value) in the bacterial growth curves. Our method successfully discriminates different plasmid transfer frequencies, yielding results that are equivalent to those obtained by a classical conjugation assay.


Assuntos
Antibacterianos , Conjugação Genética , Plasmídeos/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Transferência Genética Horizontal
2.
Nanomaterials (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068834

RESUMO

Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.

3.
Front Mol Biosci ; 7: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903459

RESUMO

The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria.

4.
J Clin Med ; 8(9)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540035

RESUMO

Cisplatin is a chemotherapeutic agent that causes the irreversible death of auditory sensory cells, leading to hearing loss. Local administration of cytoprotective drugs is a potentially better option co-therapy for cisplatin, but there are strong limitations due to the difficulty of accessing the inner ear. The use of nanocarriers for the efficient delivery of drugs to auditory cells is a novel approach for this problem. Solid lipid nanoparticles (SLNs) are biodegradable and biocompatible nanocarriers with low solubility in aqueous media. We show here that stearic acid-based SLNs have the adequate particle size, polydispersity index and ζ-potential, to be considered optimal nanocarriers for drug delivery. Stearic acid-based SLNs were loaded with the fluorescent probe rhodamine to show that they are efficiently incorporated by auditory HEI-OC1 (House Ear Institute-Organ of Corti 1) cells. SLNs were not ototoxic over a wide dose range. Glucocorticoids are used to decrease cisplatin-induced ototoxicity. Therefore, to test SLNs' drug delivery efficiency, dexamethasone and hydrocortisone were tested either alone or loaded into SLNs and tested in a cisplatin-induced ototoxicity in vitro assay. Our results indicate that the encapsulation in SLNs increases the protective effect of low doses of hydrocortisone and lengthens the survival of HEI-OC1 cells treated with cisplatin.

5.
Nanomaterials (Basel) ; 9(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897724

RESUMO

Solid lipid nanoparticles (SLN) present low toxicity, versatility to incorporate both lipophilic and hydrophilic drugs, controlled drug release and they are easy to scale-up. It is well known that the endocytosis pathway by which SLN are taken up and the subsequent subcellular distribution are crucial for the biological effect of the incorporated drug. In addition, interactions between SLN and cells depend on many factors, such as, the composition of nanoparticle surface. In this work different amounts of phosphatidylethanolamine polyethylene glycol (PE⁻PEG) were added to SLN composed of stearic acid, Epikuron 200 and sodium taurodeoxycholate. Characterization of obtained nanoparticle suspensions were performed by the analysis of particle size, polydispersity index, ζ-potential, cell toxicity and cell internalization pathway. We have observed that the presence of PE⁻PEG improves active cell internalization of the nanoparticles in an oral adenocarcinoma cell line, reducing non-specific internalization mechanisms. Finally, we have tested the effect of surface coating on the efficiency of incorporated drugs using all-trans retinoic acid as a model drug. We have observed that delivery of this drug into PE⁻PEG coated SLN increases its chemotoxic effect compared to non-coated SLN. Therefore, it can be concluded that surface modification with PE⁻PEG improves the efficiency and the specificity of the SLN-loaded drug.

6.
Nanomaterials (Basel) ; 9(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909401

RESUMO

Drug delivery systems have opened new avenues to improve the therapeutic effects of already-efficient molecules. Particularly, Solid Lipid Nanoparticles (SLNs) have emerged as promising nanocarriers in cancer therapy. SLNs offer remarkable advantages such as low toxicity, high bioavailability of drugs, versatility of incorporation of hydrophilic and lipophilic drugs, and feasibility of large-scale production. Their molecular structure is crucial to obtain high quality SLN preparations and it is determined by the relationship between the composition and preparation method. Additionally, SLNs allow overcoming several physiological barriers that hinder drug delivery to tumors and are also able to escape multidrug resistance mechanisms, characteristic of cancer cells. Focusing on cell delivery, SLNs can improve drug delivery to target cells by different mechanisms, such as passive mechanisms that take advantage of the tumor microenvironment, active mechanisms by surface modification of SLNs, and codelivery mechanisms. SLNs can incorporate many different drugs and have proven to be effective in different types of tumors (i.e., breast, lung, colon, liver, and brain), corroborating their potential. Finally, it has to be taken into account that there are still some challenges to face in the application of SLNs in anticancer treatments but their possibilities seem to be high.

7.
Sci Total Environ ; 621: 725-733, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29207350

RESUMO

Metal resistance has been associated with antibiotic resistance due to co- or cross-resistance mechanisms. Here, metal contaminated mine soil treated with organic wastes was screened for the presence of mobile genetic elements (MGEs). The occurrence of conjugative IncP-1 and mobilizable IncQ plasmids, as well as of class 1 integrons, was confirmed by PCR and Southern blot hybridization, suggesting that bacteria from these soils have gene-mobilizing capacity with implications for the dissemination of resistance factors. Moreover, exogenous isolation of MGEs from the soil bacterial community was attempted under antibiotic selection pressure by using Escherichia coli as recipient. Seventeen putative transconjugants were identified based on increased antibiotic resistance. Metabolic traits and metal resistance of putative transconjugants were investigated, and whole genome sequencing was carried out for two of them. Most putative transconjugants displayed a multi-resistant phenotype for a broad spectrum of antibiotics. They also displayed changes regarding the ability to metabolise different carbon sources, RNA: DNA ratio, growth rate and biofilm formation. Genome sequencing of putative transconjugants failed to detect genes acquired by horizontal gene transfer, but instead revealed a number of nonsense mutations, including in ubiH, whose inactivation was linked to the observed resistance to aminoglycosides. Our results confirm that mine soils contain MGEs encoding antibiotic resistance. Moreover, they point out the role of spontaneous mutations in achieving low-level antibiotic resistance in a short time, which was associated with a trade-off in the capability to metabolise specific carbon sources.


Assuntos
Farmacorresistência Bacteriana/genética , Integrons , Mineração , Plasmídeos , Microbiologia do Solo , Solo/química , Antibacterianos , Códon sem Sentido , Conjugação Genética , Escherichia coli/genética
8.
Exp Cell Res ; 361(2): 277-283, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29080796

RESUMO

The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates cell division in a variety of cell types including macrophages. However, the mechanisms involved in this action are not completely understood. In the present work we show that C1P stimulates the release of vascular endothelial growth factor (VEGF) in RAW264.7 macrophages, and that this growth factor is essential for stimulation of cell proliferation by C1P. The stimulation of VEGF release was dependent upon activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB-1 also known as Akt-1), and mitogen-activated protein kinase-kinase (MEK)/extracellularly regulated kinase-2 (ERK-2) pathways, as inhibition of these kinases with selective pharmacological inhibitors or with specific gene silencing siRNA, abrogated VEGF release. A key observation was that sequestration of VEGF with a neutralizing antibody, or treatment with VEGF siRNA abolished C1P-stimulated macrophage growth. Also, inhibition of the pathways involved in C1P-stimulated VEGF release inhibited the stimulation of macrophage growth by C1P. Moreover, blockade of VEGF receptor-2 (VEGFR-2), which is the primary receptor for VEGF, with the pharmacological inhibitor DMH4, or with specific VEGFR-2 siRNA, substantially inhibited C1P-stimulated cell growth. It can be concluded that stimulation of VEGF release is a key factor in the promotion of macrophage proliferation by C1P.


Assuntos
Ceramidas/farmacologia , Macrófagos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Anticorpos Neutralizantes/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Immunol Lett ; 169: 73-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656944

RESUMO

Inflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.7 macrophages migration via the NFκB pathway and MCP-1 induction, while PCERA-1 neither mimicked nor antagonized these activities. Conversely, PCERA-1 synergistically elevated LPS-dependent IL-10 expression in RAW264.7 macrophages via the cAMP-PKA-CREB signaling pathway, while C1P neither mimicked nor antagonized these activities. Interestingly, both compounds have the capacity to additively inhibit TNFα secretion; PCERA-1, but not C1P, suppressed LPS-induced TNFα expression in macrophages in a CREB-dependent manner, while C1P, but not PCERA-1, directly inhibited recombinant TNFα converting enzyme (TACE). Finally, PCERA-1 failed to interfere with binding of C1P to either the cell surface receptor or to TACE. These results thus indicate that the natural sphingolipid C1P and its synthetic analog PCERA-1 bind and activate distinct receptors expressed in RAW264.7 macrophages. Identification of these receptors will be instrumental for elucidation of novel activities of extra-cellular sphingolipids, and may pave the way for the design of new sphingolipid mimics for the treatment of inflammatory diseases, and pathologies which depend on cell migration, as in metastatic tumors.


Assuntos
Ceramidas/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Colloids Surf B Biointerfaces ; 135: 18-26, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231862

RESUMO

Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidic acid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxycholate) have been prepared by dilution of a microemulsion. A total of five different systems were prepared, and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal properties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acid and taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, a natural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and wound repairing activity. Calendula-loaded SLN preparations were characterized in order to determine loading capacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loaded SLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD. Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery system which could provide a controlled therapeutic alternative for reducing disease-related symptoms and improving epithelium repair in ocular surface.


Assuntos
Calendula/química , Nanopartículas/química , Extratos Vegetais/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Ácidos e Sais Biliares/química , Túnica Conjuntiva/citologia , Túnica Conjuntiva/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos/química , Liofilização , Humanos , Lipídeos/química , Tamanho da Partícula , Cicatrização/efeitos dos fármacos
11.
Biochem Pharmacol ; 92(4): 642-50, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25450673

RESUMO

Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis.


Assuntos
Ceramidas/farmacologia , Macrófagos/efeitos dos fármacos , Ácidos Fosfatídicos/farmacologia , Animais , Linhagem Celular , Macrófagos/citologia , Camundongos
12.
Am J Physiol Endocrinol Metab ; 304(11): E1213-26, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23548612

RESUMO

The bioactive sphingolipid ceramide 1-phosphate (C1P) is implicated in inflammatory responses and was recently shown to promote cell migration. However, the mechanisms involved in these actions are poorly described. Using J774A.1 macrophages, we have now discovered a new biological activity of C1P: stimulation of monocyte chemoattractant protein-1 (MCP-1) release. This novel effect of C1P was pertussis toxin (PTX) sensitive, suggesting the intervention of Gi protein-coupled receptors. Treatment of the macrophages with C1P caused activation of the phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase kinase (MEK)/extracellularly regulated kinases (ERK), and p38 pathways. Inhibition of these kinases using selective inhibitors or specific siRNA blocked the stimulation of MCP-1 release by C1P. C1P stimulated nuclear factor-κB activity, and blockade of this transcription factor also resulted in complete inhibition of MCP-1 release. Also, C1P stimulated MCP-1 release and cell migration in human THP-1 monocytes and 3T3-L1 preadipocytes. A key observation was that sequestration of MCP-1 with a neutralizing antibody or treatment with MCP-1 siRNA abolished C1P-stimulated cell migration. Also, inhibition of the pathways involved in C1P-stimulated MCP-1 release completely blocked the stimulation of cell migration by C1P. It can be concluded that C1P promotes MCP-1 release in different cell types and that this chemokine is a major mediator of C1P-stimulated cell migration. The PI3K/Akt, MEK/ERK, and p38 pathways are important downstream effectors in this action.


Assuntos
Movimento Celular/fisiologia , Ceramidas/farmacologia , Quimiocina CCL2/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Biochim Biophys Acta ; 1831(6): 1060-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23410840

RESUMO

Inflammation is a complex biological process involving a variety of locally produced molecules, as well as different types of white blood cells. Some of the so-called inflammatory mediators include cytokines, chemokines, interleukins, prostaglandins, or bioactive lipids, all of which provide protection from infection and foreign substances, such as bacteria, yeast, viruses or some chemicals. Under some circumstances, however, the organism inappropriately activates the immune system triggering an inflammatory response in the absence of foreign insults thereby leading to the establishment of autoimmune diseases. Therefore, inflammation must be tightly regulated in order to ensure sufficient protection to the organism in the absence of unwanted, and at times dangerous, side effects. Increasing experimental evidence implicates sphingolipids as major inducers of inflammatory responses and regulators of immune cell functions. In particular, ceramides and sphingosine 1-phosphate have been extensively implicated in inflammation, and ceramide 1-phosphate has also been shown to participate in these processes. The present review highlights novel aspects on the regulation of inflammation by sphingolipids, with special emphasis to the role played by ceramide 1-phosphate and ceramide kinase, the enzyme responsible for its biosynthesis, in inflammatory responses.


Assuntos
Ceramidas/efeitos adversos , Inflamação/etiologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia
14.
Cell Signal ; 25(4): 786-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333242

RESUMO

It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression.


Assuntos
Ceramidas/farmacologia , Glucose/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Linhagem Celular , Transportador de Glucose Tipo 3/metabolismo , Cinética , Macrófagos/metabolismo , Camundongos , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Translocação Genética/efeitos dos fármacos
15.
Exp Cell Res ; 318(4): 350-60, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22155727

RESUMO

We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A(2) and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA(2)-α in this pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ceramidas/farmacologia , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Modelos Biológicos , NADPH Oxidases/metabolismo , NADPH Oxidases/fisiologia , Fosfolipases A2 Citosólicas/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
16.
Cell Signal ; 23(1): 27-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20727406

RESUMO

This study tested the hypothesis that Ceramide 1-phosphate (C1P) stimulates macrophage proliferation through activation of the mammalian target of rapamycin (mTOR). We first reported that C1P is mitogenic for fibroblasts and macrophages, but the mechanisms whereby it stimulates cell proliferation are incompletely understood. Here we demonstrate that C1P causes phosphorylation of mTOR in primary (bone marrow-derived) macrophages. Activation of this kinase was tested my measuring the phosphorylation state of its downstream target p70S6K after treatment with C1P. These actions were dependent upon prior activation of phosphoinositide 3 kinase (PI3-K), as selective inhibition of this kinase blocked mTOR phosphorylation and activation. In addition, C1P caused phosphorylation of PRAS40, a component of the mTOR complex 1 (mTORC1) that is absent in mTORC2. Furthermore, inhibition of the small G protein Ras homolog enriched in brain (Rheb), which is also a specific component of mTORC1, with FTI277, completely blocked C1P-stimulated mTOR phosphorylation, DNA synthesis and macrophage growth. In addition, C1P caused phosphorylation of another Ras homolog gene family member, RhoA, which is also involved in cell proliferation. Interestingly, inhibition of the RhoA downstream effector RhoA-associated kinase (ROCK) also blocked C1P-stimulated mTOR and cell proliferation. It can be concluded that mTORC1, and RhoA/ROCK are essential components of the mechanism whereby C1P stimulates macrophage proliferation.


Assuntos
Ceramidas/farmacologia , Macrófagos/citologia , Macrófagos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Antibacterianos/farmacologia , Proliferação de Células , Células Cultivadas , Feminino , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos , Neuropeptídeos/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Sirolimo/farmacologia , Quinases Associadas a rho/metabolismo
17.
Adv Exp Med Biol ; 688: 118-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20919650

RESUMO

An important metabolite of ceramide is ceramide-1-phosphate (C1P). This lipid second messenger was first demonstrated to be mitogenic for fibroblasts and macrophages and later shown to have antiapoptotic properties. C1P is also an important mediator of the inflammatory response, by stimulating the release of arachidonic acid through activation of group IVA cytosolic phospholipase A2, the initial rate-limiting step of eicosanoid biosynthesis. C1P is formed from ceramide by the action of a specific ceramide kinase (CerK), which is distinct from the sphingosine kinases that synthesize sphingosine-1-phosphate. CerK is specific for natural ceramides with the erythro configuration in the base component and esterified to long-chain fatty acids. CerK can be activated by different agonists, including interleukin 1-beta, macrophage colony stimulating factor, or calcium ions. Most of the effects of C1P so far described seem to take place in intracellular compartments; however, the recent observation that C1P stimulates cell migration implicates a specific plasma membrane receptor that is coupled to a G(i) protein. Therefore, C1P has a dual regulatory capacity acting as an intracellular second messenger to regulate cell survival, or as extracellular receptor ligand to stimulate chemotaxis.


Assuntos
Sobrevivência Celular/fisiologia , Ceramidas/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células , Humanos , Macrófagos/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia
18.
Prog Lipid Res ; 49(4): 316-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20193711

RESUMO

Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.


Assuntos
Doença , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Animais , Ceramidases/antagonistas & inibidores , Ceramidases/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Humanos , Inflamação , Isoenzimas/metabolismo , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/química , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo
19.
Lipids Health Dis ; 9: 15, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20137073

RESUMO

Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.


Assuntos
Ceramidas/metabolismo , Regulação da Expressão Gênica , Animais , Ácido Araquidônico/metabolismo , Membrana Celular/metabolismo , Quimiotaxia , Humanos , Inflamação , Macrófagos/metabolismo , Camundongos , Mitógenos , Fosfolipases A2 Citosólicas/metabolismo , Fosforilação , Prostaglandinas/metabolismo
20.
FEBS Lett ; 584(3): 517-24, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19948174

RESUMO

We previously demonstrated that ceramide-1-phosphate (C1P) stimulates fibroblast and macrophage proliferation, but the mechanisms involved in this action have only been partially described. Here we demonstrate that C1P induces translocation of protein kinase C-alpha (PKC-alpha) from the soluble to the membrane fraction of bone marrow-derived macrophages. Translocation of this enzyme was accompanied by its phosphorylation on Ser 657 residue. Activation of PKC-alpha was independent of prior stimulation of phosphatidylinositol-dependent or phosphatidylcholine-dependent phospholipase C activities, but required activation of sphingomyelin synthesis. Inhibition of PKC-alpha activation also blocked C1P-stimulated macrophage proliferation indicating that this enzyme is essential for the mitogenic effect of C1P.


Assuntos
Ceramidas/farmacologia , Ativação Enzimática , Proteína Quinase C-alfa/metabolismo , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Fosfatos de Inositol/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...