Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114216, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38819990

RESUMO

The amyloid plaque niche is a pivotal hallmark of Alzheimer's disease (AD). Here, we employ two high-resolution spatial transcriptomics (ST) platforms, CosMx and Spatial Enhanced Resolution Omics-sequencing (Stereo-seq), to characterize the transcriptomic alterations, cellular compositions, and signaling perturbations in the amyloid plaque niche in an AD mouse model. We discover heterogeneity in the cellular composition of plaque niches, marked by an increase in microglial accumulation. We profile the transcriptomic alterations of glial cells in the vicinity of plaques and conclude that the microglial response to plaques is consistent across different brain regions, while the astrocytic response is more heterogeneous. Meanwhile, as the microglial density of plaque niches increases, astrocytes acquire a more neurotoxic phenotype and play a key role in inducing GABAergic signaling and decreasing glutamatergic signaling in hippocampal neurons. We thus show that the accumulation of microglia around hippocampal plaques disrupts astrocytic signaling, in turn inducing an imbalance in neuronal synaptic signaling.


Assuntos
Doença de Alzheimer , Astrócitos , Modelos Animais de Doenças , Microglia , Placa Amiloide , Transcriptoma , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Transcriptoma/genética , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Transgênicos , Comunicação Celular , Transdução de Sinais , Neurônios/metabolismo , Neurônios/patologia , Masculino
2.
Science ; 374(6565): eabh2858, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648330

RESUMO

In the brain's gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca2+]i) in astrocyte processes located near action potential­generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing cation channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/fisiologia , Axônios/fisiologia , Cálcio/fisiologia , Excitabilidade Cortical , Condução Nervosa , Potenciais de Ação , Animais , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley
3.
Trends Neurosci ; 44(9): 714-727, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34366147

RESUMO

Aging is a key risk factor for Alzheimer's disease (AD), but the reasons for this association are not well understood. Senescent cells accumulate in aged tissues and have been shown to play causal roles in age-related pathologies through their proinflammatory secretome. The question arises whether senescence-induced inflammation might contribute to AD and bridge the gap between aging and AD. Here, we highlight the role of cellular senescence as a driver of the aging phenotype, and discuss the current evidence that connects senescence with AD and neurodegeneration.


Assuntos
Doença de Alzheimer , Idoso , Envelhecimento , Senescência Celular , Humanos , Inflamação , Fenótipo
4.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190042

RESUMO

The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30-80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.


Assuntos
Interneurônios/fisiologia , Parvalbuminas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Genótipo , Hipocampo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/fisiologia , Parvalbuminas/genética , Proteínas rho de Ligação ao GTP/genética
5.
Glia ; 68(2): 328-344, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31520551

RESUMO

Microglia sense their environment using an array of membrane receptors. While P2Y12 receptors are known to play a key role in targeting directed motility of microglial processes to sites of damage where ATP/ADP is released, little is known about the role of P2Y13 , which transcriptome data suggest is the second most expressed neurotransmitter receptor in microglia. We show that, in patch-clamp recordings in acute brain slices from mice lacking P2Y13 receptors, the THIK-1 K+ current density evoked by ADP activating P2Y12 receptors was increased by ~50%. This increase suggested that the P2Y12 -dependent chemotaxis response should be potentiated; however, the time needed for P2Y12 -mediated convergence of microglial processes onto an ADP-filled pipette or to a laser ablation was longer in the P2Y13 KO. Anatomical analysis showed that the density of microglia was unchanged, but that they were less ramified with a shorter process length in the P2Y13 KO. Thus, chemotactic processes had to grow further and so arrived later at the target, and brain surveillance was reduced by ~30% in the knock-out. Blocking P2Y12 receptors in brain slices from P2Y13 KO mice did not affect surveillance, demonstrating that tonic activation of these high-affinity receptors is not needed for surveillance. Strikingly, baseline interleukin-1ß release was increased fivefold while release evoked by LPS and ATP was not affected in the P2Y13 KO, and microglia in intact P2Y13 KO brains were not detectably activated. Thus, P2Y13 receptors play a role different from that of their close relative P2Y12 in regulating microglial morphology and function.


Assuntos
Interleucina-1beta/metabolismo , Microglia/metabolismo , Microglia/patologia , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Movimento Celular/fisiologia , Quimiotaxia/fisiologia
6.
Nat Commun ; 10(1): 4399, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562315

RESUMO

Mitochondrial Rho (Miro) GTPases localize to the outer mitochondrial membrane and are essential machinery for the regulated trafficking of mitochondria to defined subcellular locations. However, their sub-mitochondrial localization and relationship with other critical mitochondrial complexes remains poorly understood. Here, using super-resolution fluorescence microscopy, we report that Miro proteins form nanometer-sized clusters along the mitochondrial outer membrane in association with the Mitochondrial Contact Site and Cristae Organizing System (MICOS). Using knockout mouse embryonic fibroblasts we show that Miro1 and Miro2 are required for normal mitochondrial cristae architecture and Endoplasmic Reticulum-Mitochondria Contacts Sites (ERMCS). Further, we show that Miro couples MICOS to TRAK motor protein adaptors to ensure the concerted transport of the two mitochondrial membranes and the correct distribution of cristae on the mitochondrial membrane. The Miro nanoscale organization, association with MICOS complex and regulation of ERMCS reveal new levels of control of the Miro GTPases on mitochondrial functionality.


Assuntos
Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Células Cultivadas , Embrião de Mamíferos/citologia , Retículo Endoplasmático/ultraestrutura , Fibroblastos/citologia , Células HeLa , Humanos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Ligação Proteica , Ratos , Proteínas rho de Ligação ao GTP/genética
7.
Proc Natl Acad Sci U S A ; 115(7): E1608-E1617, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382767

RESUMO

Microglia, the brain's innate immune cells, have highly motile processes which constantly survey the brain to detect infection, remove dying cells, and prune synapses during brain development. ATP released by tissue damage is known to attract microglial processes, but it is controversial whether an ambient level of ATP is needed to promote constant microglial surveillance in the normal brain. Applying the ATPase apyrase, an enzyme which hydrolyzes ATP and ADP, reduces microglial process ramification and surveillance, suggesting that ambient ATP/ADP maintains microglial surveillance. However, attempting to raise the level of ATP/ADP by blocking the endogenous ecto-ATPase (termed NTPDase1/CD39), which also hydrolyzes ATP/ADP, does not affect the cells' ramification or surveillance, nor their membrane currents, which respond to even small rises of extracellular [ATP] or [ADP] with the activation of K+ channels. This indicates a lack of detectable ambient ATP/ADP and ecto-ATPase activity, contradicting the results with apyrase. We resolve this contradiction by demonstrating that contamination of commercially available apyrase by a high K+ concentration reduces ramification and surveillance by depolarizing microglia. Exposure to the same K+ concentration (without apyrase added) reduced ramification and surveillance as with apyrase. Dialysis of apyrase to remove K+ retained its ATP-hydrolyzing activity but abolished the microglial depolarization and decrease of ramification produced by the undialyzed enzyme. Thus, applying apyrase affects microglia by an action independent of ATP, and no ambient purinergic signaling is required to maintain microglial ramification and surveillance. These results also have implications for hundreds of prior studies that employed apyrase to hydrolyze ATP/ADP.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Microglia/enzimologia , Difosfato de Adenosina/metabolismo , Animais , Apirase/metabolismo , Encéfalo/enzimologia , Encéfalo/fisiologia , Feminino , Masculino , Microglia/química , Microglia/fisiologia , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Neuron ; 97(2): 299-312.e6, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29290552

RESUMO

Microglia exhibit two modes of motility: they constantly extend and retract their processes to survey the brain, but they also send out targeted processes to envelop sites of tissue damage. We now show that these motility modes differ mechanistically. We identify the two-pore domain channel THIK-1 as the main K+ channel expressed in microglia in situ. THIK-1 is tonically active, and its activity is potentiated by P2Y12 receptors. Inhibiting THIK-1 function pharmacologically or by gene knockout depolarizes microglia, which decreases microglial ramification and thus reduces surveillance, whereas blocking P2Y12 receptors does not affect membrane potential, ramification, or surveillance. In contrast, process outgrowth to damaged tissue requires P2Y12 receptor activation but is unaffected by blocking THIK-1. Block of THIK-1 function also inhibits release of the pro-inflammatory cytokine interleukin-1ß from activated microglia, consistent with K+ loss being needed for inflammasome assembly. Thus, microglial immune surveillance and cytokine release require THIK-1 channel activity.


Assuntos
Interleucina-1beta/fisiologia , Microglia/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Movimento Celular , Polaridade Celular , Forma Celular , Extensões da Superfície Celular/fisiologia , Quimiotaxia/fisiologia , Inflamassomos/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Potássio/fisiologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12/fisiologia , Transcriptoma
9.
Elife ; 62017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-28130923

RESUMO

Myelination speeds conduction of the nerve impulse, enhancing cognitive power. Changes of white matter structure contribute to learning, and are often assumed to reflect an altered number of myelin wraps. We now show that, in rat optic nerve and cerebral cortical axons, the node of Ranvier length varies over a 4.4-fold and 8.7-fold range respectively and that variation of the node length is much less along axons than between axons. Modelling predicts that these node length differences will alter conduction speed by ~20%, similar to the changes produced by altering the number of myelin wraps or the internode length. For a given change of conduction speed, the membrane area change needed at the node is >270-fold less than that needed in the myelin sheath. Thus, axon-specific adjustment of node of Ranvier length is potentially an energy-efficient and rapid mechanism for tuning the arrival time of information in the CNS.


Assuntos
Axônios/fisiologia , Condução Nervosa , Nós Neurofibrosos/fisiologia , Animais , Bioestatística , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Modelos Biológicos , Nervo Óptico/citologia , Nervo Óptico/fisiologia , Ratos
10.
Glia ; 65(2): 309-321, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27796063

RESUMO

Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321.


Assuntos
Axônios/fisiologia , Córtex Cerebral/citologia , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Organogênese/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Córtex Cerebral/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/ultraestrutura , Técnicas de Cultura de Órgãos , Organogênese/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de GABA/genética , Receptores de GABA/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/farmacologia
11.
Cell Rep ; 17(2): 317-327, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705781

RESUMO

Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.


Assuntos
Dendritos/genética , Proteínas Mitocondriais/genética , Degeneração Neural/genética , Neurogênese/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Axônios/metabolismo , Axônios/patologia , Dendritos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia
12.
J Neurosci ; 35(48): 15996-6011, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631479

RESUMO

It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function.


Assuntos
Astrócitos/ultraestrutura , Sinalização do Cálcio/fisiologia , Espaço Intracelular/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Sinapses/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Espaço Intracelular/genética , Masculino , Proteínas Mitocondriais/genética , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Sprague-Dawley , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas rho de Ligação ao GTP/genética
13.
Acta Neuropathol ; 128(2): 161-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913350

RESUMO

Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K(+) channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders.


Assuntos
Encéfalo/patologia , Nós Neurofibrosos/patologia , Medula Espinal/patologia , Animais , Encéfalo/fisiopatologia , Humanos , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Nós Neurofibrosos/fisiologia , Medula Espinal/fisiopatologia
14.
Proc Natl Acad Sci U S A ; 107(38): 16679-84, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823221

RESUMO

Modification of the number of GABA(A) receptors (GABA(A)Rs) clustered at inhibitory synapses can regulate inhibitory synapse strength with important implications for information processing and nervous system plasticity and pathology. Currently, however, the mechanisms that regulate the number of GABA(A)Rs at synapses remain poorly understood. By imaging superecliptic pHluorin tagged GABA(A)R subunits we show that synaptic GABA(A)R clusters are normally stable, but that increased neuronal activity upon glutamate receptor (GluR) activation results in their rapid and reversible dispersal. This dispersal correlates with increases in the mobility of single GABA(A)Rs within the clusters as determined using single-particle tracking of GABA(A)Rs labeled with quantum dots. GluR-dependent dispersal of GABA(A)R clusters requires Ca(2+) influx via NMDA receptors (NMDARs) and activation of the phosphatase calcineurin. Moreover, the dispersal of GABA(A)R clusters and increased mobility of individual GABA(A)Rs are dependent on serine 327 within the intracellular loop of the GABA(A)R γ2 subunit. Thus, NMDAR signaling, via calcineurin and a key GABA(A)R phosphorylation site, controls the stability of synaptic GABA(A)Rs, with important implications for activity-dependent control of synaptic inhibition and neuronal plasticity.


Assuntos
Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Substituição de Aminoácidos , Animais , Calcineurina/fisiologia , Sinalização do Cálcio , Células Cultivadas , Ácido Glutâmico/metabolismo , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Plasticidade Neuronal , Neurônios/fisiologia , Ratos , Receptores de GABA-A/química , Receptores de GABA-A/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/química , Transdução de Sinais , Transfecção
15.
Mol Cell Neurosci ; 44(4): 330-41, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20417281

RESUMO

The majority of fast inhibitory synaptic transmission in the mammalian nervous system is mediated by GABA(A) receptors (GABA(A)Rs). Here we report a novel interaction between the protein Maf1 and GABA(A)R beta-subunit intracellular domains. We find Maf1 to be highly expressed in brain and enriched in the hippocampus and cortex. In heterologous cells and neurons we show Maf1 co-localises with GABA(A)Rs in intracellular compartments and at the cell surface. In neurons, Maf1 is found localised in the cytoplasm in dendrites, partially overlapping with GABA(A)Rs and inhibitory synapses and in addition is enriched in the neuronal nucleus. We also report that Maf1 interacts with a novel coiled-coil domain containing protein that we have called Macoco (for Maf1 interacting coiled-coil protein). Like Maf1, Macoco can also be found localised to inhibitory synapses and directly interacts with GABA(A)Rs. Expressing Macoco in neurons increases surface GABA(A)R levels. Our results suggest that Maf1 and Macoco are novel GABA(A)R interacting proteins important for regulating GABA(A)R surface expression and GABA(A)R signalling in the brain.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Animais , Células COS , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Frações Subcelulares , Transfecção , Técnicas do Sistema de Duplo-Híbrido
16.
Neuron ; 65(1): 53-65, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20152113

RESUMO

The density of GABA(A) receptors (GABA(A)Rs) at synapses regulates brain excitability, and altered inhibition may contribute to Huntington's disease, which is caused by a polyglutamine repeat in the protein huntingtin. However, the machinery that delivers GABA(A)Rs to synapses is unknown. We demonstrate that GABA(A)Rs are trafficked to synapses by the kinesin family motor protein 5 (KIF5). We identify the adaptor linking the receptors to KIF5 as the huntingtin-associated protein 1 (HAP1). Disrupting the HAP1-KIF5 complex decreases synaptic GABA(A)R number and reduces the amplitude of inhibitory postsynaptic currents. When huntingtin is mutated, as in Huntington's disease, GABA(A)R transport and inhibitory synaptic currents are reduced. Thus, HAP1-KIF5-dependent GABA(A)R trafficking is a fundamental mechanism controlling the strength of synaptic inhibition in the brain. Its disruption by mutant huntingtin may explain some of the defects in brain information processing occurring in Huntington's disease and provides a molecular target for therapeutic approaches.


Assuntos
Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Cinesinas/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/genética , Técnicas de Patch-Clamp , Peptídeos/genética , Peptídeos/metabolismo , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
17.
Proc Natl Acad Sci U S A ; 106(41): 17552-7, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19815531

RESUMO

The strength of synaptic inhibition depends partly on the number of GABA(A) receptors (GABA(A)Rs) found at synaptic sites. The trafficking of GABA(A)Rs within the endocytic pathway is a key determinant of surface GABA(A)R number and is altered in neuropathologies, such as cerebral ischemia. However, the molecular mechanisms and signaling pathways that regulate this trafficking are poorly understood. Here, we report the subunit specific lysosomal targeting of synaptic GABA(A)Rs. We demonstrate that the targeting of synaptic GABA(A)Rs into the degradation pathway is facilitated by ubiquitination of a motif within the intracellular domain of the gamma2 subunit. Blockade of lysosomal activity or disruption of the trafficking of ubiquitinated cargo to lysosomes specifically increases the efficacy of synaptic inhibition without altering excitatory currents. Moreover, mutation of the ubiquitination site within the gamma2 subunit retards the lysosomal targeting of GABA(A)Rs and is sufficient to block the loss of synaptic GABA(A)Rs after anoxic insult. Together, our results establish a previously unknown mechanism for influencing inhibitory transmission under normal and pathological conditions.


Assuntos
Lisossomos/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Ubiquitina/fisiologia , Animais , Córtex Cerebral/fisiologia , Leupeptinas/farmacologia , Microscopia Confocal , Neurônios/efeitos dos fármacos , Subunidades Proteicas/fisiologia , Ratos , Receptores de GABA-A/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
18.
Pharmacol Ther ; 123(1): 17-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19374920

RESUMO

Synaptic inhibition plays a key role in regulating neuronal excitability and information processing in the brain. The strength of synaptic inhibition is therefore an important determinant of both cellular and network activity levels in the central nervous system (CNS). gamma-aminobutyric acid type A (GABA(A)) receptors are the major sites for fast inhibitory neurotransmission in the CNS and alterations in their trafficking, synaptic accumulation and function play a key role in regulating neuronal excitability. Synaptic receptor number is determined by the trafficking of GABA(A) receptors to and away from inhibitory synapses and by their stability and localization at the inhibitory postsynaptic domain. Here we discuss advances that have led to an improved understanding of the mechanisms that regulate the delivery and stabilization of GABA(A) receptors at inhibitory synapses and address the role of GABA(A) receptor trafficking, GABA(A) receptor associated proteins and post-translational modifications in regulating this process.


Assuntos
Encéfalo/metabolismo , Membrana Celular/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de GABA-A , Transmissão Sináptica/fisiologia , Animais , Humanos , Modelos Moleculares , Transporte Proteico , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia
19.
Neuron ; 61(4): 541-55, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19249275

RESUMO

Energy use, mainly to reverse ion movements in neurons, is a fundamental constraint on brain information processing. Trafficking of mitochondria to locations in neurons where there are large ion fluxes is essential for powering neural function. Mitochondrial trafficking is regulated by Ca2+ entry through ionotropic glutamate receptors, but the underlying mechanism is unknown. We show that the protein Miro1 links mitochondria to KIF5 motor proteins, allowing mitochondria to move along microtubules. This linkage is inhibited by micromolar levels of Ca2+ binding to Miro1. With the EF hand domains of Miro1 mutated to prevent Ca2+ binding, Miro1 could still facilitate mitochondrial motility, but mitochondrial stopping induced by glutamate or neuronal activity was blocked. Activating neuronal NMDA receptors with exogenous or synaptically released glutamate led to Miro1 positioning mitochondria at the postsynaptic side of synapses. Thus, Miro1 is a key determinant of how energy supply is matched to energy usage in neurons.


Assuntos
Proteínas de Drosophila/fisiologia , Mitocôndrias/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Radioisótopos de Cálcio , Sinalização do Cálcio/fisiologia , Células Cultivadas , Dendritos/fisiologia , Eletrofisiologia , Metabolismo Energético/fisiologia , Glutationa Transferase/genética , Glutationa Transferase/fisiologia , Imunoprecipitação , Cinesinas/genética , Cinesinas/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Ratos
20.
Neuropharmacology ; 55(5): 844-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18662706

RESUMO

The number of surface and synaptic GABA(A) receptors is an important determinant of inhibitory synapse strength. Surface receptor number is in part controlled by removal of receptors from the membrane by interaction with the clathrin adaptor AP2. Here we demonstrate that there are two binding sites for AP2 in the gamma2-subunit: a Yxxvarphi type motif specific to gamma2-subunits and a basic patch AP2 binding motif, that is also found in GABA(A) receptor beta-subunits. Blocking GABA(A) receptor-AP2 interactions using a peptide that inhibits AP2 binding to GABA(A) receptors via the conserved basic patch mechanism increases synaptic responses within minutes, whereas simultaneously blocking both binding mechanisms has an additive effect. These data suggest that multiple AP2 internalization signals control the levels of surface and synaptic GABA(A) receptors to regulate synaptic inhibition.


Assuntos
Complexo 2 de Proteínas Adaptadoras/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Complexo 2 de Proteínas Adaptadoras/química , Animais , Sítios de Ligação/efeitos dos fármacos , Corpo Estriado/citologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Ratos , Receptores de GABA-A/química , Alinhamento de Sequência , Sinaptotagmina I/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...