Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699307

RESUMO

Background: Early therapeutic intervention in high-risk SMM (HR-SMM) has demonstrated benefit in previous studies of lenalidomide with or without dexamethasone. Triplets and quadruplet studies have been examined in this same population. However, to date, none of these studies examined the impact of depth of response on long-term outcomes of participants treated with lenalidomide-based therapy, and whether the use of the 20/2/20 model or the addition of genomic alterations can further define the population that would benefit the most from early therapeutic intervention. Here, we present the results of the phase II study of the combination of ixazomib, lenalidomide, and dexamethasone in patients with HR-SMM with long-term follow-up and baseline single-cell tumor and immune sequencing that help refine the population to be treated for early intervention studies. Methods: This is a phase II trial of ixazomib, lenalidomide, and dexamethasone (IRD) in HR-SMM. Patients received 9 cycles of induction therapy with ixazomib 4mg on days 1, 8, and 15; lenalidomide 25mg on days 1-21; and dexamethasone 40mg on days 1, 8, 15, and 22. The induction phase was followed by maintenance with ixazomib 4mg on days 1, 8, and 15; and lenalidomide 15mg d1-21 for 15 cycles for 24 months of treatment. The primary endpoint was progression-free survival after 2 years of therapy. Secondary endpoints included depth of response, biochemical progression, and correlative studies included single-cell RNA sequencing and/or whole-genome sequencing of the tumor and single-cell sequencing of immune cells at baseline. Results: Fifty-five patients, with a median age of 64, were enrolled in the study. The overall response rate was 93%, with 31% of patients achieving a complete response and 45% achieving a very good partial response or better. The most common grade 3 or greater treatment-related hematologic toxicities were neutropenia (16 patients; 29%), leukopenia (10 patients; 18%), lymphocytopenia (8 patients; 15%), and thrombocytopenia (4 patients; 7%). Non-hematologic grade 3 or greater toxicities included hypophosphatemia (7 patients; 13%), rash (5 patients; 9%), and hypokalemia (4 patients; 7%). After a median follow-up of 50 months, the median progression-free survival (PFS) was 48.6 months (95% CI: 39.9 - not reached; NR) and median overall survival has not been reached. Patients achieving VGPR or better had a significantly better progression-free survival (p<0.001) compared to those who did not achieve VGPR (median PFS 58.2 months vs. 31.3 months). Biochemical progression preceded or was concurrent with the development of SLiM-CRAB criteria in eight patients during follow-up, indicating that biochemical progression is a meaningful endpoint that correlates with the development of end-organ damage. High-risk 20/2/20 participants had the worst PFS compared to low- and intermediate-risk participants. The use of whole genome or single-cell sequencing of tumor cells identified high-risk aberrations that were not identified by FISH alone and aided in the identification of participants at risk of progression. scRNA-seq analysis revealed a positive correlation between MHC class I expression and response to proteasome inhibition and at the same time a decreased proportion of GZMB+ T cells within the clonally expanded CD8+ T cell population correlated with suboptimal response. Conclusions: Ixazomib, lenalidomide and dexamethasone in HR-SMM demonstrates significant clinical activity with an overall favorable safety profile. Achievement of VGPR or greater led to significant improvement in time to progression, suggesting that achieving deep response is beneficial in HR-SMM. Biochemical progression correlates with end-organ damage. Patients with high-risk FISH and lack of deep response had poor outcomes. ClinicalTrials.gov identifier: (NCT02916771).

2.
Vaccine ; 41(40): 5841-5847, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37596198

RESUMO

The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal region of the M protein is variable in sequence, defines the M/emm type, and contains epitopes that elicit opsonic antibodies that protect animals from challenge infections. Although there are >200 M types of Strep A, there is now evidence that structurally related M proteins can be grouped into clusters and that immunity may be cluster-specific in addition to M type-specific. This observation has led to recent studies of structure-based design of multivalent M peptide vaccines to select peptides predicted to cross-react with heterologous M types to improve vaccine coverage. In the current study, we have applied a refined series of peptide structural algorithms to predict immunological cross-reactivity among 117 N-terminal M peptides representing the most prevalent M types of Strep A. Based on the results of the structural analyses, in combination with global M type prevalence data, we constructed a 32-valent vaccine containing 19 cross-reactive vaccine candidates predicted to cross-react with 37 heterologous M peptides to which were added 13 type-specific M peptides. The 4-protein recombinant vaccine was immunogenic in rabbits and elicited significant levels of antibodies against 31/32 (97%) vaccine peptides and 28/37 (76%) peptides predicted to cross-react. The vaccine antisera also promoted opsonophagocytic killing of vaccine and cross-reactive M types of Strep A. Based on a recent analysis of M type prevalence of Strep A, the potential global coverage of the 32-valent vaccine is âˆ¼90%, ranging from 68% in Africa to 95% in North America. Our results indicate the utility of structure-based design that may be applied to future studies of broadly protective M peptide vaccines.


Assuntos
Vacinas Estreptocócicas , Streptococcus pyogenes , Animais , Coelhos , Vacinas Combinadas , África , Algoritmos , Anticorpos
3.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577538

RESUMO

The development of targeted therapy for patients with Multiple Myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chr1q (Amp1q) is the most frequent arm-level copy number gain in patients with MM, and it is associated with higher risk of progression and death despite recent advances in therapeutics. Thus, developing targeted therapy for patients with MM and Amp1q stands to benefit a large portion of patients in need of more effective management. Here, we employed large-scale dependency screens and drug screens to systematically characterize the therapeutic vulnerabilities of MM with Amp1q and showed increased sensitivity to the combination of MCL1 and PI3K inhibitors. Using single-cell RNA sequencing, we compared subclones with and without Amp1q within the same patient tumors and showed that Amp1q is associated with higher levels of MCL1 and the PI3K pathway. Furthermore, by isolating isogenic clones with different copy number for part of the chr1q arm, we showed increased sensitivity to MCL1 and PI3K inhibitors with arm-level gain. Lastly, we demonstrated synergy between MCL1 and PI3K inhibitors and dissected their mechanism of action in MM with Amp1q.

4.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992320

RESUMO

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , Genótipo , Fenótipo , Inflamação , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
5.
Cancer Cell ; 40(11): 1358-1373.e8, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379208

RESUMO

Patients with smoldering multiple myeloma (SMM) are observed until progression, but early treatment may improve outcomes. We conducted a phase II trial of elotuzumab, lenalidomide, and dexamethasone (EloLenDex) in patients with high-risk SMM and performed single-cell RNA and T cell receptor (TCR) sequencing on 149 bone marrow (BM) and peripheral blood (PB) samples from patients and healthy donors (HDs). We find that early treatment with EloLenDex is safe and effective and provide a comprehensive characterization of alterations in immune cell composition and TCR repertoire diversity in patients. We show that the similarity of a patient's immune cell composition to that of HDs may have prognostic relevance at diagnosis and after treatment and that the abundance of granzyme K (GZMK)+ CD8+ effector memory T (TEM) cells may be associated with treatment response. Last, we uncover similarities between immune alterations observed in the BM and PB, suggesting that PB-based immune profiling may have diagnostic and prognostic utility.


Assuntos
Mieloma Múltiplo , Mieloma Múltiplo Latente , Humanos , Biomarcadores , Progressão da Doença , Fatores Imunológicos , Imunoterapia , Lenalidomida/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo Latente/terapia , Ensaios Clínicos Fase II como Assunto
6.
J Immunol ; 207(4): 1138-1149, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34341168

RESUMO

Group A streptococcal infections are a significant cause of global morbidity and mortality. A leading vaccine candidate is the surface M protein, a major virulence determinant and protective Ag. One obstacle to the development of M protein-based vaccines is the >200 different M types defined by the N-terminal sequences that contain protective epitopes. Despite sequence variability, M proteins share coiled-coil structural motifs that bind host proteins required for virulence. In this study, we exploit this potential Achilles heel of conserved structure to predict cross-reactive M peptides that could serve as broadly protective vaccine Ags. Combining sequences with structural predictions, six heterologous M peptides in a sequence-related cluster were predicted to elicit cross-reactive Abs with the remaining five nonvaccine M types in the cluster. The six-valent vaccine elicited Abs in rabbits that reacted with all 11 M peptides in the cluster and functional opsonic Abs against vaccine and nonvaccine M types in the cluster. We next immunized mice with four sequence-unrelated M peptides predicted to contain different coiled-coil propensities and tested the antisera for cross-reactivity against 41 heterologous M peptides. Based on these results, we developed an improved algorithm to select cross-reactive peptide pairs using additional parameters of coiled-coil length and propensity. The revised algorithm accurately predicted cross-reactive Ab binding, improving the Matthews correlation coefficient from 0.42 to 0.74. These results form the basis for selecting the minimum number of N-terminal M peptides to include in potentially broadly efficacious multivalent vaccines that could impact the overall global burden of group A streptococcal diseases.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Vacinas Estreptocócicas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Peptídeos/imunologia , Vacinas Sintéticas/imunologia
7.
Vaccine ; 39(12): 1773-1779, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33642159

RESUMO

The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal sequence of the protein defines the more than 200 M types of Strep A and also contains epitopes that elicit opsonic antibodies, some of which cross-react with heterologous M types. Current efforts to develop broadly protective M protein-based vaccines are directed at identifying potential cross-protective epitopes located in the N-terminal regions of cluster-related M proteins for use as vaccine antigens. In this study, we have used a comprehensive approach using the recurrent neural network ABCpred and IEDB epitope conservancy analysis tools to predict 16 residue linear B-cell epitopes from 117 clinically relevant M types of Strep A (~88% of global Strep A infections). To examine the immunogenicity of these epitope-based vaccines, nine peptides that together shared ≥60% sequence identity with 37 heterologous M proteins were incorporated into two recombinant hybrid protein vaccines, in which the epitopes were repeated 2 or 3 times, respectively. The combined immune responses of immunized rabbits showed that the vaccines elicited significant levels of antibodies against all nine vaccine epitopes present in homologous N-terminal 1-50 amino acid synthetic M peptides, as well as cross-reactive antibodies against 16 of 37 heterologous M peptides predicted to contain similar epitopes. The epitope-specificity of the cross-reactive antibodies was confirmed by ELISA inhibition assays and functional opsonic activity was assayed in HL-60-based bactericidal assays. The results provide important information for the future design of broadly protective M protein-based Strep A vaccines.


Assuntos
Antígenos de Bactérias , Vacinas Estreptocócicas , Animais , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Proteínas de Transporte , Epitopos , Redes Neurais de Computação , Coelhos , Streptococcus pyogenes
8.
J Immunol ; 205(7): 1962-1977, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878910

RESUMO

The reliable prediction of the affinity of candidate peptides for the MHC is important for predicting their potential antigenicity and thus influences medical applications, such as decisions on their inclusion in T cell-based vaccines. In this study, we present a rapid, predictive computational approach that combines a popular, sequence-based artificial neural network method, NetMHCpan 4.0, with three-dimensional structural modeling. We find that the ensembles of bound peptide conformations generated by the programs MODELLER and Rosetta FlexPepDock are less variable in geometry for strong binders than for low-affinity peptides. In tests on 1271 peptide sequences for which the experimental dissociation constants of binding to the well-characterized murine MHC allele H-2Db are known, by applying thresholds for geometric fluctuations the structure-based approach in a standalone manner drastically improves the statistical specificity, reducing the number of false positives. Furthermore, filtering candidates generated with NetMHCpan 4.0 with the structure-based predictor led to an increase in the positive predictive value (PPV) of the peptides correctly predicted to bind very strongly (i.e., K d < 100 nM) from 40 to 52% (p = 0.027). The combined method also significantly improved the PPV when tested on five human alleles, including some with limited data for training. Overall, an average increase of 10% in the PPV was found over the standalone sequence-based method. The combined method should be useful in the rapid design of effective T cell-based vaccines.


Assuntos
Antígenos/metabolismo , Antígeno de Histocompatibilidade H-2D/metabolismo , Peptídeos/metabolismo , Algoritmos , Animais , Antígenos/química , Antígenos/imunologia , Inteligência Artificial , Biologia Computacional , Cristalografia por Raios X , Antígeno de Histocompatibilidade H-2D/química , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
9.
J Biol Chem ; 295(12): 3826-3836, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029479

RESUMO

Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/imunologia , Streptococcus pyogenes/metabolismo , Vacinas Sintéticas/imunologia , Algoritmos , Sequência de Aminoácidos , Animais , Reações Antígeno-Anticorpo , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Análise por Conglomerados , Reações Cruzadas , Epitopos/imunologia , Peptídeos/química , Conformação Proteica em alfa-Hélice , Coelhos , Streptococcus pyogenes/imunologia
10.
Langmuir ; 36(4): 1043-1052, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31944772

RESUMO

Titanium dioxide (TiO2) nanoparticles are found in an array of consumer and industrial products, and human exposure to these nanoparticles involves interaction with biological membranes. To understand the effect of the membrane lipid composition on bilayer perturbation by TiO2, we performed all-atom molecular dynamics simulations of nanosized TiO2 interacting with three single component bilayers differing only in their headgroup composition: the zwitterionic DOPC, which is overall neutral containing negatively charged phosphate and positively charged choline in its head, DOPG, which is overall anionic containing negatively charged phosphate and neutral glycerol, and the anionic DOPS, containing negatively charged phosphate attached to the hydroxyl side-chain of the amino acid, serine containing negatively charged carboxyl and positively charged ammonium. The nanoparticle adheres to all three bilayers causing a negative curvature on their top leaflet. However, the local deformation of DOPG was more pronounced than DOPC and DOPS. The anionic DOPG, which is the thinnest of the three bilayers, interacted most strongly with the TiO2. DOPS has the next strongest interaction; however, its high bending modulus enables it to resist deformation by the nanoparticle. DOPC has the weakest interaction with the nanoparticle of the three as it has the highest bending modulus and its zwitterionic head groups have strong cohesive interactions. We also observed a nonuniform response of the bilayers: the orientational order of the lipids near the nanoparticle decreases, while that of the lipids away from the nanoparticle increases. The overall thickness and bending modulus of DOPG increased upon contact with the nanoparticle owing to overall stiffening of the bilayer despite local softening, while the average structural and mechanical properties of DOPC and DOPS remain unchanged, which can be explained in part by the greater bilayer bending elasticicty of DOPC and DOPS. The above findings suggest that regions of biological membranes populated by anionic lipids with weaker bending elasticity will be more susceptible to perturbation by TiO2 nanoparticles than zwitterionic-rich regions.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Titânio/química , Adesividade
11.
Biochim Biophys Acta Gen Subj ; 1864(4): 129535, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954798

RESUMO

Selecting peptides that bind strongly to the major histocompatibility complex (MHC) for inclusion in a vaccine has therapeutic potential for infections and tumors. Machine learning models trained on sequence data exist for peptide:MHC (p:MHC) binding predictions. Here, we train support vector machine classifier (SVMC) models on physicochemical sequence-based and structure-based descriptor sets to predict peptide binding to a well-studied model mouse MHC I allele, H-2Db. Recursive feature elimination and two-way forward feature selection were also performed. Although low on sensitivity compared to the current state-of-the-art algorithms, models based on physicochemical descriptor sets achieve specificity and precision comparable to the most popular sequence-based algorithms. The best-performing model is a hybrid descriptor set containing both sequence-based and structure-based descriptors. Interestingly, close to half of the physicochemical sequence-based descriptors remaining in the hybrid model were properties of the anchor positions, residues 5 and 9 in the peptide sequence. In contrast, residues flanking position 5 make little to no residue-specific contribution to the binding affinity prediction. The results suggest that machine-learned models incorporating both sequence-based descriptors and structural data may provide information on specific physicochemical properties determining binding affinities.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Aprendizado de Máquina , Peptídeos/química , Algoritmos , Alelos , Sequência de Aminoácidos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...