Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 847: 157615, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901897

RESUMO

The aim of this study was to assess the potential environmental impacts associated with microalgae systems for wastewater treatment and bioproducts recovery. In this sense, a Life Cycle Assessment was carried out evaluating two systems treating i) urban wastewater and ii) industrial wastewater (from a food industry), with the recovery of bioproducts (i.e. natural pigments and biofertilizer) and bioenergy (i.e. biogas). Additionally, both alternatives were compared to iii) a conventional system using a standard growth medium for microalgae cultivation in order to show the potential benefits of using wastewater compared to typical cultivation approaches. The results indicated that the system treating industrial wastewater with unialgal culture had lower environmental impacts than the system treating urban wastewater with mixed cultures. Bioproducts recovery from microalgae wastewater treatment systems can reduce the environmental impacts up to 5 times compared to a conventional system using a standard growth medium. This was mainly due to the lower chemicals consumption for microalgae cultivation. Food-industry effluent showed to be the most promising scenario for bioproducts recovery from microalgae treating wastewater, because of its better quality compared to urban wastewater which also allows the cultivation of a single microalgae species. In conclusion, microalgae wastewater treatment systems are a promising solution not only for wastewater treatment but also to boost the circular bioeconomy in the water sector through microalgae-based product recovery.


Assuntos
Microalgas , Purificação da Água , Animais , Biocombustíveis , Biomassa , Estágios do Ciclo de Vida , Águas Residuárias , Água , Purificação da Água/métodos
2.
Bioresour Technol ; 342: 125993, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592617

RESUMO

Mathematical models for microalgae and cyanobacteria are seldomly validated for different algal species, as such limiting their applicability. Therefore, in this research, a previously developed kinetic model describing the growth of the green microalgae species Chlorella vulgaris was used to simulate the growth of the cyanobacterium Arthrospira platensis and the red alga Porphyridium purpureum. Based on a global sensitivity analysis, the model parameter µmax,A was calibrated using respirometric-titrimetric data. Calibration yielded values of 5.76 ± 0.17 d-1, 2.06 ± 0.16 d-1 and 1.06 ± 0.09 d-1 for Chlorella vulgaris, Arthrospira platensis and Porphyridium purpureum, respectively. Model simulations revealed that the biological growth equations in this model are adequate. However, increased light intensities triggered a survival mechanism for Arthrospira platensis, which is currently not taken into account by the model, leading to bad model accuracy under these circumstances. Future work should address the most important survival mechanisms and include those in the model to widen its applicability.


Assuntos
Chlorella vulgaris , Microalgas , Porphyridium , Spirulina , Biomassa
3.
ACS Sustain Chem Eng ; 8(29): 10691-10701, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32953285

RESUMO

This study assessed the recovery of natural pigments (phycobiliproteins) and bioenergy (biogas) from microalgae grown in wastewater. A consortium of microalgae, mainly composed by Nostoc, Phormidium, and Geitlerinema, known to have high phycobiliproteins content, was grown in photobioreactors. The growth medium was composed by secondary effluent from a high rate algal pond (HRAP) along with the anaerobic digestion centrate, which aimed to enhance the N/P ratio, given the lack of nutrients in the secondary effluent. Additionally, the centrate is still a challenging anaerobic digestion residue since the high nitrogen concentrations have to be removed before disposal. Removal efficiencies up to 52% of COD, 86% of NH4 +-N, and 100% of phosphorus were observed. The biomass composition was monitored over the experimental period in order to ensure stable cyanobacterial dominance in the mixed culture. Phycocyanin and phycoerythrin were extracted from harvested biomass, achieving maximum concentrations of 20.1 and 8.1 mg/g dry weight, respectively. The residual biomass from phycobiliproteins extraction was then used to produce biogas, with final methane yields ranging from 159 to 199 mL CH4/g VS. According to the results, by combining the extraction of pigments and the production of biogas from residual biomass, we would not only obtain high-value compounds, but also more energy (around 5-10% higher), as compared to the single recovery of biogas. The proposed process poses an example of resource recovery from biomass grown in wastewater, moving toward a circular bioeconomy.

4.
Bioresour Technol ; 303: 122894, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32032937

RESUMO

The aim of this study was to investigate the cultivation of Nostoc sp., Arthrospira platensis and Porphyridium purpureum in industrial wastewater to produce phycobiliproteins. Initially, light intensity and growth medium composition were optimized, indicating that light conditions influenced the phycobiliproteins production more than the medium composition. Conditions were then selected, according to biomass growth, nutrients removal and phycobiliproteins production, to cultivate these microalgae in food-industry wastewater. The three species could efficiently remove up to 98%, 94% and 100% of COD, inorganic nitrogen and PO43--P, respectively. Phycocyanin, allophycocyanin and phycoerythrin were successfully extracted from the biomass reaching concentrations up to 103, 57 and 30 mg/g dry weight, respectively. Results highlight the potential use of microalgae for industrial wastewater treatment and related high-value phycobiliproteins recovery.


Assuntos
Microalgas , Porphyridium , Spirulina , Biomassa , Águas Residuárias
5.
Bioresour Technol ; 280: 27-36, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30754003

RESUMO

The aim of this study was to assess the effect of primary treatment on the performance of two pilot-scale high rate algal ponds (HRAPs) treating urban wastewater, considering their treatment efficiency, biomass productivity, characteristics and biogas production potential. Results indicated that the primary treatment did not significantly affect the wastewater treatment efficiency (NH4+-N removal of 93 and 91% and COD removal of 62 and 65% in HRAP with and without primary treatment, respectively). The HRAP without primary treatment had higher biodiversity and productivity (20 vs. 15 g VSS/m2d). Biomass from both systems presented good settling capacity. Results of biochemical methane potential test showed that co-digesting microalgae and primary sludge led to higher methane yields (238-258 mL CH4/g VS) compared with microalgae mono-digestion (189-225 mL CH4/g VS). Overall, HRAPs with and without primary treatment seem to be appropriate alternatives for combining wastewater treatment and bioenergy recovery.


Assuntos
Biomassa , Metano/metabolismo , Lagoas , Biocombustíveis , Microalgas , Esgotos , Águas Residuárias
6.
Water Sci Technol ; 75(3-4): 782-792, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28234279

RESUMO

A shortcut nitrogen removal process was investigated for treatment of high ammonium strength wastewater using an algal-bacterial consortium in photo-sequencing batch reactors (PSBRs). In this process, algae provide oxygen for nitritation during the light period, while denitritation takes place during the dark (anoxic) period, reducing overall energy and chemical requirements. Two PSBRs were operated at different solids retention times (SRTs) and fed with a high ammonium concentration wastewater (264 mg NH4+-N L-1), with a '12 hour on, 12 hour off' light cycle, and an average surface light intensity of 84 µmol m-2 s-1. High total inorganic nitrogen removal efficiencies (∼95%) and good biomass settleability (sludge volume index 53-58 mL g-1) were observed in both PSBRs. Higher biomass density was observed at higher SRT, resulting in greater light attenuation and less oxygen production. A mathematical model was developed to describe the algal-bacterial interactions, which was based on Activated Sludge Model No. 3, modified to include algal processes. Model predictions fit the experimental data well. This research also proposes an innovative holistic approach to water and energy recovery. Wastewater can be effectively treated in an anaerobic digester, generating energy from biogas, and later post-treated using an algal-bacterial PSBR, which produces biomass for additional biogas production by co-digestion.


Assuntos
Consórcios Microbianos , Modelos Teóricos , Nitrogênio/análise , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Bactérias/metabolismo , Biocombustíveis , Biomassa , Reatores Biológicos/microbiologia , Desnitrificação , Microalgas/metabolismo , Indústria de Petróleo e Gás , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...