Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(1): 36-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564632

RESUMO

Nitroxyl (HNO) is the one-electron reduced and protonated congener of nitric oxide (•NO), owning a distinct chemical profile. Based on real-time detection, we demonstrate that HNO is endogenously formed in Arabidopsis. Senescence and hypoxia induce shifts in the redox balance, triggering HNO decay or formation mediated by non-enzymatic •NO/HNO interconversion with cellular reductants. The stimuli-dependent HNO generation supports or competes with •NO signalling, depending on the local redox environment.


Assuntos
Arabidopsis , Óxidos de Nitrogênio/farmacologia , Óxido Nítrico , Oxirredução
2.
Plant Biol (Stuttg) ; 18(2): 171-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332667

RESUMO

Programmed cell death (PCD) is an essential part of the ontogeny of roots and their tolerance/resistance mechanisms, allowing adaptation and growth under adverse conditions. It occurs not only at the cellular and subcellular level, but also at the levels of tissues, organs and even whole plants. This process involves a wide spectrum of mechanisms, from signalling and the expression of specific genes to the degradation of cellular structures. The major goals of this review were to broaden current knowledge about PCD processes in roots, and to identify mechanisms associated with both developmental and stress-associated cell death in roots. Vacuolar cell death, when cell contents are removed by a combination of an autophagy-associated process and the release of hydrolases from a collapsed vacuole, is responsible for programming self-destruction. Regardless of the conditions and factors inducing PCD, its subcellular events usually include the accumulation of autophagosome-like structures, and the formation of massive lytic compartments. In some cases these are followed by the nuclear changes of chromatin condensation and DNA fragmentation. Tonoplast disruption and vacuole implosion occur very rapidly, are irreversible and constitute a definitive step toward cell death in roots. Active cell elimination plays an important role in various biological processes in the life history of plants, leading to controlled cellular death during adaptation to changing environmental conditions, and organ remodelling throughout development and senescence.


Assuntos
Meio Ambiente , Raízes de Plantas/citologia , Morte Celular , Raízes de Plantas/ultraestrutura , Estresse Fisiológico
3.
Plant Biol (Stuttg) ; 13(5): 747-56, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21815979

RESUMO

In the present work, we tested known nitric oxide (NO) modulators generating the NO+ (sodium nitroprusside, SNP) and NO˙ forms (S-nitroso-N-acetyl-D-penicillamine, SNAP and nitrosoglutathione, GSNO). This allowed us to compare downstream NO-related physiological effects on proteins found in leaves of pelargonium (Pelargonium peltatum L.). Protein modification via NO donors generally affects plant metabolism in a distinct manner, manifested by a lower thiobarbituric acid reactive substance (TBARS) content and lipoxygenase (LOX) activity in response to SNAP and GSNO. This is in contrast to the response observed for SNP treatment. Most changes in enzyme activity (GR, glutathione reductase; GST, glutathione-S-transferase; GPX, glutathione peroxidase) are most spectacular and repeatable during the first 8 h of incubation, which is explained by the half-life of the applied donors. In particular, a close dependence was found between the time-course of NO emission from the applied donors and the temporary inhibition of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX). The observed changes were accompanied by time-dependent alterations in protein accumulation as analysed by two-dimensional gel electrophoresis (2-DE) in pelargonium leaves treated with NO donors (SNP, SNAP and GSNO). Using proteomics, different proteins were found to be down- and up-regulated. However, no new protein spots characteristic of all three donors were found. These results indicate that the form of NO emitted from the donor structure plays a key role in switching on appropriate metabolic modifications. It has been noted that several NO-affected metabolomic changes induced by the used donors were not comparable, which confirms the need to maintain caution when interpreting results obtained using the pharmacological approach with different NO modulator compounds.


Assuntos
Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Pelargonium/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Ativação Enzimática/fisiologia , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Lipoxigenase/metabolismo , Reguladores de Crescimento de Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...