Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 53(23): 12384-95, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25285579

RESUMO

Homoleptic organocobalt(III) compounds with formula [NBu4][Co(III)(C6X5)4] [X = F (3), Cl (4)] were obtained in reasonable yields by chemical oxidation of the corresponding divalent species [NBu4]2[Co(II)(C6X5)4] [X = F (1), Cl (2)]. The [Co(III)(C6X5)4](-)/[Co(II)(C6X5)4](2-) couples are electrochemically related by quasi-reversible, one-electron exchange processes at moderate potential: E1/2 = -0.29 (X = F) and -0.36 V (X = Cl) versus saturated calomel electrode. The [Co(III)(C6X5)4](-) anions in salts 3 and 4 show an unusual square-planar geometry as established by single-crystal X-ray diffraction methods. According to their stereochemistry, these Co(III) derivatives (d(6)) are paramagnetic non-Kramers systems with a large zero-field splitting contribution and no observable electron paramagnetic resonance (EPR) spectrum. The thermal dependence of their magnetic susceptibilities can be explained in terms of a spin-Hamiltonian formalism with S = 1 ground state (intermediate spin) and substantial spin-orbit contribution. The magnetic properties of the square-planar d(7) parent species [NBu4]2[Co(II)(C6X5)4] were also thoroughly studied both at microscopic (EPR) and macroscopic levels (alternating current and direct current magnetization measurements). They behave as S = 1/2 (low spin) systems with mainly (dz(2))(1) electron configuration and a certain degree of s-orbital admixture that has been quantified. The electronic structures of all four open-shell [Co(C6X5)4](q-) compounds (q = 1, 2) accounting for their respective magnetic properties are based on a common orbital energy-level diagram.

2.
Dalton Trans ; 41(4): 1297-303, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22134335

RESUMO

The mononuclear, five-coordinate organochromium(V) compound [NBu(4)][CrO(C(6)F(5))(4)] (1) has been obtained as a dark red solid in moderate yield by treatment of the homoleptic organochromium(III) derivative [NBu(4)](2)[Cr(C(6)F(5))(5)] with NO[BF(4)] in CH(2)Cl(2) solution under an oxygen atmosphere. The Cr(V) centre in the [CrO(C(6)F(5))(4)](-) anion shows a square-pyramidal geometry with the four C(6)F(5) groups in the basal positions and the oxo ligand in the apical one (X-ray). The short Cr-O distance (153.8(2) pm) suggests a high degree of triple bond character for the chromyl unit. The EPR spectrum of 1 in solution shows an isotropic signal with g(iso) = 1.995(1) and a rich hyperfine structure due to coupling with the (53)Cr isotope [a(Cr) = 46.95(4) MHz] as well as with the ortho-F and meta-F substituents of the C(6)F(5) rings [a(F) = 4.20(2) MHz and a'(F) = 2.12(2) MHz] in keeping with the presence of non-interacting, fast tumbling, paramagnetic [CrO(C(6)F(5))(4)](-) units (d(1)). In the solid state, however, both the microscopic (EPR) and macroscopic magnetic properties (isothermal magnetisation and thermal dependence of the magnetic susceptibility) suggest the existence of weak ferromagnetic interactions with T(C) = 0.20(2) K. Such magnetic interactions may probably be favoured by π interactions between C(6)F(5) rings of neighbour [CrO(C(6)F(5))(4)](-) units in the crystal.

3.
Dalton Trans ; 40(4): 853-61, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21152634

RESUMO

The homoleptic, square pyramidal organochromium(III) compound [NBu(4)](2)[Cr(C(6)F(5))(5)] (1) reacts with excess organic isocyanides, CNR [R = (t)Bu, 2,6-dimethylphenyl (Xy)], under dissociation of the apical C(6)F(5) ligand to give the more saturated, singly charged complexes [NBu(4)][trans-Cr(C(6)F(5))(4)(CNR)(2)] [R = (t)Bu (2), Xy (3)], containing six monodentate C-donor ligands. These compounds exhibit an axially distorted octahedral structure (single-crystal X-ray diffraction) with the four C(6)F(5) groups defining the equatorial positions and the CNR ligands occupying the axial ones. Compounds 2 and 3 both behave as spin quartet species (S = 3/2) at microscopic level (EPR spectroscopy), their macroscopic magnetic properties depending upon the nature of the terminal R group, as established by magnetisation measurements. When the R substituent is the saturated alkyl group (t)Bu, the compound (2) behaves as a simple paramagnet, with no magnetic interaction between individual Cr(III) centres along the whole temperature range measured (1.8-265 K). By contrast, a weak antiferromagnetic interaction is detected for compound 3 at low temperature with T(N) = 0.19(1) K. Since the closest intermetallic distances are similar in the crystals of 2·CH(2)Cl(2) and 3·1.75CH(2)Cl(2) (ca. 1.1 nm), we conclude that the insaturation of the aromatic Xy group together with the extended intermolecular π-π stacking interactions between Xy rings observed in the crystal lattice of 3·1.75CH(2)Cl(2) (centroid-to-centroid distance: 0.35 nm) favour magnetic interaction between the individual magnetic centres.

5.
Chemistry ; 15(41): 11020-30, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19760717

RESUMO

Homoleptic perhalophenyl derivatives of divalent nickel complexes with the general formula [NBu(4)](2)[Ni(II)(C(6)X(5))(4)] [X=F (1), Cl (2)] have been prepared by low-temperature treatment of the halo-complex precursor [NBu(4)](2)[NiBr(4)] with the corresponding organolithium reagent LiC(6)X(5). Compounds 1 and 2 are electrochemically related by reversible one-electron exchange processes with the corresponding organometallate(III) compounds [NBu(4)][Ni(III)(C(6)X(5))(4)] [X=F (3), Cl (4)]. The potentials of the [Ni(III)(C(6)X(5))(4)](-)/[Ni(II)(C(6)X(5))(4)](2-) couples are +0.07 and -0.11 V for X=F or Cl, respectively. Compounds 3 and 4 have also been prepared and isolated in good yield by chemical oxidation of 1 or 2 with bromine or the amminium salt [N(C(6)H(4)Br-4)(3)][SbCl(6)]. The [Ni(III)(C(6)X(5))(4)](-) species have SP-4 structures in the salts 3 and 4, as established by single-crystal X-ray diffraction methods. The [Ni(II)(C(6)F(5))(4)](2-) ion in the parent compound 1 has also been found to exhibit a rather similar SP-4 structure. According to their SP-4 geometry, the Ni(III) compounds (d(7)) behave as S=1/2 systems both at microscopic (EPR) and macroscopic levels (ac and dc magnetization measurements). The spin Hamiltonian parameters obtained from the analysis of the magnetic behavior of 3 and 4 within the framework of ligand field theory show that the unpaired electron is centered mainly on the metal atom, with >97 % estimated d(z(2) ) contribution. Thermal decomposition of 3 and 4 proceeds with formation of the corresponding C(6)X(5)--C(6)X(5) coupling compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...