Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4575, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834586

RESUMO

Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Crânio , Animais , Regeneração Óssea/fisiologia , Camundongos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Masculino , Receptores Notch/metabolismo , Receptores Notch/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Feminino , Angiogênese
2.
Elife ; 82019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782728

RESUMO

The homeostasis of heart and other organs relies on the appropriate provision of nutrients and functional specialization of the local vasculature. Here, we have used mouse genetics, imaging and cell biology approaches to investigate how homeostasis in the adult heart is controlled by endothelial EphB4 and its ligand ephrin-B2, which are known regulators of vascular morphogenesis and arteriovenous differentiation during development. We show that inducible and endothelial cell-specific inactivation of Ephb4 in adult mice is compatible with survival, but leads to rupturing of cardiac capillaries, cardiomyocyte hypertrophy, and pathological cardiac remodeling. In contrast, EphB4 is not required for integrity and homeostasis of capillaries in skeletal muscle. Our analysis of mutant mice and cultured endothelial cells shows that EphB4 controls the function of caveolae, cell-cell adhesion under mechanical stress and lipid transport. We propose that EphB4 maintains critical functional properties of the adult cardiac vasculature and thereby prevents dilated cardiomyopathy-like defects.


Assuntos
Endotélio Vascular/crescimento & desenvolvimento , Efrina-B2/genética , Coração/crescimento & desenvolvimento , Receptor EphB4/genética , Adulto , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Homeostase/genética , Humanos , Ligantes , Camundongos , Morfogênese/genética , Músculo Esquelético/crescimento & desenvolvimento , Neovascularização Fisiológica/genética
3.
J Am Soc Nephrol ; 27(3): 781-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26204899

RESUMO

AKI with incomplete epithelial repair is a major contributor to CKD characterized by tubulointerstitial fibrosis. Injury-induced epithelial secretion of profibrotic factors is hypothesized to underlie this link, but the identity of these factors and whether epithelial injury is required remain undefined. We previously showed that activation of the canonical Wnt signaling pathway in interstitial pericytes cell autonomously drives myofibroblast activation in vivo. Here, we show that inhibition of canonical Wnt signaling also substantially prevented TGFß-dependent myofibroblast activation in vitro. To investigate whether Wnt ligand derived from proximal tubule is sufficient for renal fibrogenesis, we generated a novel mouse strain with inducible proximal tubule Wnt1 secretion. Adult mice were treated with vehicle or tamoxifen and euthanized at 12 or 24 weeks postinjection. Compared with vehicle-treated controls, kidneys with tamoxifen-induced Wnt1 expression from proximal tubules displayed interstitial myofibroblast activation and proliferation and increased matrix protein production. PDGF receptor ß-positive myofibroblasts isolated from these kidneys exhibited increased canonical Wnt target gene expression compared with controls. Notably, fibrotic kidneys had no evidence of inflammatory cytokine expression, leukocyte infiltration, or epithelial injury, despite the close histologic correlation of each with CKD. These results provide the first example of noninflammatory renal fibrosis. The fact that epithelial-derived Wnt ligand is sufficient to drive interstitial fibrosis provides strong support for the maladaptive repair hypothesis in the AKI to CKD transition.


Assuntos
Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Miofibroblastos/metabolismo , Comunicação Parácrina , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt , Proteína Wnt1/metabolismo , Actinas/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Proliferação de Células , Modelos Animais de Doenças , Fibronectinas/metabolismo , Fibrose , Expressão Gênica , Inflamação/complicações , Ligantes , Camundongos , Miofibroblastos/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Tamoxifeno/farmacologia , Via de Sinalização Wnt/genética , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...