Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 101: 116-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318765

RESUMO

A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20µM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10µM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100µM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems.


Assuntos
Cocaína/toxicidade , Dopamina/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Animais , Bicuculina/farmacologia , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Líquido Extracelular/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Estresse Fisiológico , Ácido gama-Aminobutírico/metabolismo
2.
Behav Brain Res ; 250: 206-10, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685321

RESUMO

The lateral septum (LS) is a brain nucleus associated to stress and drug addiction. Here we show that dopamine extracellular levels in the lateral septum are under the control of corticotrophin releasing factor (CRF). Reverse dialysis of 1µM stressin-1, a type 1 CRF receptor (CRF-R1) agonist, induced a significant increase of LS dopamine extracellular levels in saline-treated rats that was blocked by the co-perfusion of stressin-1 with CP-154526, a specific CRF-R1 antagonist. Repeated cocaine administration (15mg/kg; twice daily for 14 days) suppressed the increase in LS dopamine extracellular levels induced by CRF-R1 activation. This suppression was observed 24h, as well as 21 days after withdrawal from repeated cocaine administration. In addition, depolarization-induced dopamine release in the LS was significantly higher in cocaine-compared to saline-treated rats. Thus, our results show that the activation of CRF-R1 in the LS induces a significant increase in dopamine extracellular levels. Interestingly, repeated cocaine administration induces a long-term suppression of the CRF-R1 mediated dopamine release and a transient increase in dopamine releasability in the LS.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Septo do Cérebro/efeitos dos fármacos , Animais , Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/farmacologia , Esquema de Medicação , Interações Medicamentosas , Masculino , Microdiálise , Peptídeos Cíclicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Fatores de Tempo
3.
Basic Clin Pharmacol Toxicol ; 111(6): 371-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22788961

RESUMO

4-Methylthioamphetamine (MTA) is a phenylisopropylamine derivative whose use has been associated with severe intoxications. MTA is usually regarded as a selective serotonin-releasing agent. Nevertheless, previous data have suggested that its mechanism of action probably involves a catecholaminergic component. As little is known about dopaminergic effects of this drug, in this work the actions of MTA upon the dopamine (DA) transporter (DAT) were studied in vitro, in vivo and in silico. Also, the possible abuse liability of MTA was behaviourally assessed. MTA exhibited an in vitro affinity for the rat DAT in the low micromolar range (6.01 µM) and induced a significant, dose-dependent increase in striatal DA. MTA significantly increased c-Fos-positive cells in striatum and nucleus accumbens, induced conditioned place preference and increased locomotor activity. Docking experiments were performed in a homology model of the DAT. In conclusion, our results show that MTA is able to increase extracellular striatal DA levels and that its administration has rewarding properties. These effects were observed at concentrations or doses that can be relevant to its use in human beings.


Assuntos
Anfetaminas/farmacologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Eur J Pharmacol ; 572(1): 32-9, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17644088

RESUMO

In the present study, we evaluated the effects of the synthetic cannabinoid receptor agonist (R)-(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN55,212-2) and the active component of Cannabis delta-9-tetrahydrocannabinol (triangle up(9)-THC) on Na(+),K(+)-ATPase activity in synaptosomal mice brain preparation. Additionally, the potential exogenous cannabinoids and endogenous opioid peptides interaction as well as the role of G(i/o) proteins in mediating Na(+),K(+)-ATPase activation were also explored. The ouabain-sensitive Na(+),K(+)-ATPase activity was measured in whole-brain pure intact synaptosomes (obtained by Percoll gradient method) of female CF-1 mice and was calculated as the difference between the total and the ouabain (1 mM)-insensitive Na(+),K(+)-ATPase activities. Incubation in vitro of the synaptosomes with WIN55,212-2 (0.1 pM-10 microM) or triangle up(9)-THC (0.1 pM-0.1 microM), in a concentration-dependent manner, stimulated ouabain-sensitive Na(+),K(+)-ATPase activity. WIN55,212-2 was less potent but more efficacious than triangle up(9)-THC. N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM-251) (10 nM), a CB(1) cannabinoid receptor selective antagonist, had not effect per se but antagonized the enhancement of Na(+),K(+)-ATPase activity induced by both, WIN55,212-2 and triangle up(9)-THC. AM-251 produced a significant reduction in the E(max) of cannabinoid-induced increase in Na(+),K(+)-ATPase activity, but did not significantly modify their EC(50). On the other hand, co-incubation with naloxone (1 microM), an opioid receptor antagonist, did not significantly modify the effect of WIN55,212-2 and completely failed to modify the effect of triangle up(9)-THC on synaptosomal Na(+),K(+)-ATPase. Finally, pre-incubation with 0.5 microg of pertussis toxin (G(i/o) protein blocker) completely abolished the enhancement of ouabain-sensitive Na(+),K(+)-ATPase activity induced by WIN55,212-2. A lower dose, 0.25 microg, decreased the E(max) of WIN55,212-2 by 70% but did not significantly affect its EC(50). These results suggest that WIN55212-2 and triangle up(9)-THC indirectly enhance Na(+),K(+)-ATPase activity in the brain by activating cannabinoid CB(1) receptors in a naloxone-insensitive manner. In addition, the effect of WIN55,212-2 on neuronal Na(+),K(+)-ATPase is apparently due to activation of G(i/o) proteins.


Assuntos
Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Dronabinol/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas In Vitro , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ouabaína/farmacologia , Toxina Pertussis/administração & dosagem , Toxina Pertussis/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...