Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(11): 2280-2296, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34553588

RESUMO

Caspases are a family of enzymes that regulate biological processes such as inflammation and programmed cell death, through proteolysis. For example, in the intrinsic pathway of apoptosis, cell death signaling involves cytochrome c release from the mitochondria, which leads to the activation of caspase-9 and eventually the executioners caspase-3 and -7. One key step in our understanding of these proteases is to identify their respective protein substrates. Although hundreds of substrates have been linked to caspase-3, only a small handful of substrates have been reported for caspase-9. Employing deep profiling by subtiligase N-terminomics, we present here an unbiased analysis of caspase-3 and caspase-9 substrates in native cell lysates. We identified 906 putative protein substrates associated with caspase-3 and 124 protein substrates for caspase-9. This is the most comprehensive list of caspase substrates reported for each of these proteases, revealing a pool of new substrates that could not have been discovered using other approaches. Over half of the caspase-9 substrates were also cleaved by caspase-3, but often at unique sites, suggesting an evolved functional redundancy for these two proteases. Correspondingly, nearly half of the caspase-9 cleavage sites were not recognized by caspase-3. Our results suggest that in addition to its important role in activating the executioners, the role of caspase-9 is likely broader and more complex than previously appreciated, which includes proteolysis of key apoptotic substrates other than just caspase-3 and -7 and involvement in non-apoptotic pathways. Our results are well poised to aid the discovery of new biological functions for these two caspases.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Proteínas/metabolismo , Caspase 3/genética , Caspase 9/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Células Jurkat , Plasmídeos , Proteínas/química , Proteínas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...