Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 30(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29044888

RESUMO

This study quantified the spin-lattice relaxation rate (R1 ) dispersion of murine tissues from 0.24 mT to 3 T. A combination of ex vivo and in vivo spin-lattice relaxation rate measurements were acquired for murine tissue. Selected brain, liver, kidney, muscle, and fat tissues were excised and R1 dispersion profiles were acquired from 0.24 mT to 1.0 T at 37 °C, using a fast field-cycling MR (FFC-MR) relaxometer. In vivo R1 dispersion profiles of mice were acquired from 1.26 T to 1.74 T at 37 °C, using FFC-MRI on a 1.5 T scanner outfitted with a field-cycling insert electromagnet to dynamically control B0 prior to imaging. Images at five field strengths (1.26, 1.39, 1.5, 1.61, 1.74 T) were acquired using a field-cycling pulse sequence, where B0 was modulated for varying relaxation durations prior to imaging. R1 maps and R1 dispersion (ΔR1 /ΔB0 ) were calculated at 1.5 T on a pixel-by-pixel basis. In addition, in vivo R1 maps of mice were acquired at 3 T. At fields less than 1 T, a large R1 magnetic field dependence was observed for tissues. ROI analysis of the tissues showed little relaxation dispersion for magnetic fields from 1.26 T to 3 T. Our tissue measurements show strong R1 dispersion at field strengths less than 1 T and limited R1 dispersion at field strengths greater than 1 T. These findings emphasize the inherent weak R1 magnetic field dependence of healthy tissues at clinical field strengths. This characteristic of tissues can be exploited by a combination of FFC-MRI and T1 contrast agents that exhibit strong relaxivity magnetic field dependences (inherent or by binding to a protein), thereby increasing the agents' specificity and sensitivity. This development can provide potential insights into protein-based biomarkers using FFC-MRI to assess early changes in tumour development, which are not easily measureable with conventional MRI.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Animais , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...