Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7124, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346135

RESUMO

One of the important advantages of optical metasurfaces over conventional diffractive optical elements is their capability to efficiently deflect light by large angles. However, metasurfaces are conventionally designed using approaches that are optimal for small deflection angles and their performance for designing high numerical aperture devices is not well quantified. Here we introduce and apply a technique for the estimation of the efficiency of high numerical aperture metasurfaces. The technique is based on a particular coherent averaging of diffraction coefficients of periodic blazed gratings and can be used to compare the performance of different metasurface designs in implementing high numerical aperture devices. Unlike optimization-based methods that rely on full-wave simulations and are only practicable in designing small metasurfaces, the gradient averaging technique allows for the design of arbitrarily large metasurfaces. Using this technique, we identify an unconventional metasurface design and experimentally demonstrate a metalens with a numerical aperture of 0.78 and a measured focusing efficiency of 77%. The grating averaging is a versatile technique applicable to many types of gradient metasurfaces, thus enabling highly efficient metasurface components and systems.

2.
Proc Natl Acad Sci U S A ; 116(43): 21379-21384, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591229

RESUMO

Fast, large-scale, and robust 3-dimensional (3D) fabrication techniques for patterning a variety of structures with submicrometer resolution are important in many areas of science and technology such as photonics, electronics, and mechanics with a wide range of applications from tissue engineering to nanoarchitected materials. From several promising 3D manufacturing techniques for realizing different classes of structures suitable for various applications, interference lithography with diffractive masks stands out for its potential to fabricate complex structures at fast speeds. However, the interference lithography masks demonstrated generally suffer from limitations in terms of the patterns that can be generated. To overcome some of these limitations, here we propose the metasurface-mask-assisted 3D nanofabrication which provides great freedom in patterning various periodic structures. To showcase the versatility of this platform, we design metasurface masks that generate exotic periodic lattices like gyroid, rotated cubic, and diamond structures. As a proof of concept, we experimentally demonstrate a diffractive element that can generate the diamond lattice.

3.
Nat Commun ; 9(1): 4196, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305616

RESUMO

An optical design space that can highly benefit from the recent developments in metasurfaces is the folded optics architecture where light is confined between reflective surfaces, and the wavefront is controlled at the reflective interfaces. In this manuscript, we introduce the concept of folded metasurface optics by demonstrating a compact spectrometer made from a 1-mm-thick glass slab with a volume of 7 cubic millimeters. The spectrometer has a resolution of ~1.2 nm, resolving more than 80 spectral points from 760 to 860 nm. The device is composed of three reflective dielectric metasurfaces, all fabricated in a single lithographic step on one side of a substrate, which simultaneously acts as the propagation space for light. The folded metasystem design can be applied to many optical systems, such as optical signal processors, interferometers, hyperspectral imagers, and computational optical systems, significantly reducing their sizes and increasing their mechanical robustness and potential for integration.

4.
Nano Lett ; 18(8): 4943-4948, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016110

RESUMO

Two-photon microscopy is a key imaging technique in life sciences due to its superior deep-tissue imaging capabilities. Light-weight and compact two-photon microscopes are of great interest because of their applications for in vivo deep brain imaging. Recently, dielectric metasurfaces have enabled a new category of small and lightweight optical elements, including objective lenses. Here we experimentally demonstrate two-photon microscopy using a double-wavelength metasurface lens. It is specifically designed to focus 820 and 605 nm light, corresponding to the excitation and emission wavelengths of the measured fluorophors, to the same focal distance. The captured two-photon images are qualitatively comparable to the ones taken by a conventional objective lens. Our metasurface lens can enable ultracompact two-photon microscopes with similar performance compared to current systems that are usually based on graded-index-lenses. In addition, further development of tunable metasurface lenses will enable fast axial scanning for volumetric imaging.

5.
Nat Commun ; 9(1): 812, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476147

RESUMO

Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-µm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 µm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

6.
Opt Lett ; 42(14): 2746-2749, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708159

RESUMO

We demonstrate the generation of orbital angular momentum (OAM) beams using high-efficient polarization-insensitive phase masks. The OAM beams generated by the phase masks are characterized in terms of their tolerance to misalignment (lateral displacement or tilt) between the incident beam and phase mask. For certain scenarios, our results show that (a) when the tilt angle is within the range of -20 to +20 deg, the crosstalk among modes is less than -15 dB; and (b) lateral displacement of 0.3 mm could cause a large amount of power leaked to adjacent modes. Finally, OAM beams generated by the phase masks are demonstrated over a two-channel OAM-multiplexing link, each channel carrying a 40 Gbit/s data stream. An optical signal-to-noise-ratio (OSNR) penalty of ∼1 dB is measured without crosstalk at the bit error rate (BER) of 3.8×10-3. With crosstalk, an OSNR penalty of <1.5 dB is observed at the same BER.

7.
Nano Lett ; 17(5): 3159-3164, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28388090

RESUMO

We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.

8.
Nat Commun ; 7: 13682, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892454

RESUMO

Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

9.
Sci Rep ; 6: 33306, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27615808

RESUMO

To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

10.
Sci Rep ; 6: 32803, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27597568

RESUMO

Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices.

11.
Opt Express ; 24(16): 18468-77, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505810

RESUMO

Metasurfaces are ultrathin optical structures that manipulate optical wavefronts. Most metasurface devices which deflect light are designed for operation at a single wavelength, and their function changes as the wavelength is varied. Here we propose and demonstrate a double-wavelength metasurface based on polarization dependent dielectric meta-atoms that control the phases of two orthogonal polarizations independently. Using this platform, we design lenses that focus light at 915 and 780 nm with perpendicular linear polarizations to the same focal distance. Lenses with numerical apertures up to 0.7 and efficiencies from 65% to above 90% are demonstrated. In addition to the high efficiency and numerical aperture, an important feature of this technique is that the two operation wavelengths can be chosen to be arbitrarily close. These characteristics make these lenses especially attractive for fluorescence microscopy applications.

12.
Nat Photonics ; 10: 459-462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574529

RESUMO

Nanoscale localization of single molecules is a crucial function in several advanced microscopy techniques, including single-molecule tracking and wide-field super-resolution imaging 1. To date, a central consideration of such techniques is how to optimize the precision of molecular localization. However, as these methods continue to push toward the nanometre size scale, an increasingly important concern is the localization accuracy. In particular, single fluorescent molecules emit with an anisotropic radiation pattern of an oscillating electric dipole, which can cause significant localization biases using common estimators 2-5. Here we present the theory and experimental demonstration of a solution to this problem based on azimuthal filtering in the Fourier plane of the microscope. We do so using a high efficiency dielectric metasurface polarization/phase device composed of nanoposts with sub-wavelength spacing 6. The method is demonstrated both on fluorophores embedded in a polymer matrix, and in dL5 protein complexes that bind Malachite green 7, 8.

13.
Opt Express ; 24(11): 11677-82, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410093

RESUMO

We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Pérot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.

14.
Nat Commun ; 7: 11618, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193141

RESUMO

Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multi-functional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymer substrate that locally modify near-infrared (λ=915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. The conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.

15.
Opt Express ; 23(4): 5335-47, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836565

RESUMO

Microring and microdisk lasers are potential candidates for small footprint, low threshold in-plane integrated lasers; however, they exhibit multimode lasing spectra and bistability. Here, we theoretically propose and experimentally demonstrate a novel approach for achieving single mode lasing in microring lasers. Our approach is based on increasing the radiation loss of all but one of the resonant modes of microring resonators by integrating second order gratings on the microrings' waveguide. We present single mode operation of electrically pumped semiconductor microring lasers whose lasing modes are lithographically selected via the second order grating. We also show that adding the grating does not increase the lasing threshold current significantly.

16.
J Med Eng Technol ; 38(8): 402-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25340717

RESUMO

Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.


Assuntos
Fêmur , Modelos Anatômicos , Adulto , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
17.
Med Biol Eng Comput ; 50(6): 595-604, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22374310

RESUMO

Computer-based simulations of human hip joints generally include investigating contacts happening among soft or hard tissues during hip movement. In many cases, hip movement is approximated as rotation about an estimated hip center. In this paper, we investigate the effect of different methods used for estimating hip joint center of rotation on the results acquired from hip simulation. For this reason, we use three dimensional models of hip tissues reconstructed from MRI datasets of 10 subjects, and estimate their center of rotation by applying five different methods (including both predictive and functional approaches). Then, we calculate the amount of angular and radial penetrations that happen among three dimensional meshes of cartilages, labrum, and femur bone, when hip is rotating about different estimated centers of rotation. The results indicate that hip simulation can be highly affected by the method used for estimating hip center of rotation. However, under some conditions (e.g. when Adduction or External Rotation are considered) we can expect to have a more robust simulation. In addition, it was observed that applying some methods (e.g. the predictive approach based on acetabulum) may result in less robust simulation, comparing to the other methods.


Assuntos
Articulação do Quadril/anatomia & histologia , Modelos Anatômicos , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Articulação do Quadril/fisiologia , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Rotação , Adulto Jovem
18.
J Orthop Res ; 28(7): 880-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20058260

RESUMO

We introduce a new method for computerized real-time evaluation of femoroacetabular impingement (FAI). In contrast to previously presented stress analyses, this method is based on two types of predictions of penetration depths for two rotating bodies: curvilinear and radial penetration depth. This intuitive method allows the analysis of both bony and soft tissue structures (such as cartilage and acetabular labrum) in real time. Characteristic penetration depth patterns were found for different subtypes of FAI, such as cam and pincer pathologies. In addition, correlation between the penetration depths (estimated by applying this method) and the existing contact stresses (estimated by applying the finite element method) of various hip morphologies were found. A strong correlation with predicted stress values existed, with a mean correlation coefficient of 0.91 for the curvilinear and 0.80 for the radial penetration method. The results show that the penetration depth method is a promising, fast, and accurate method for quantification and diagnosis of FAI.


Assuntos
Simulação por Computador , Análise de Elementos Finitos , Articulação do Quadril/patologia , Modelos Biológicos , Osteoartrite do Quadril/patologia , Acetábulo/patologia , Cabeça do Fêmur/patologia , Articulação do Quadril/cirurgia , Humanos , Osteoartrite do Quadril/cirurgia , Cuidados Pré-Operatórios
19.
J Biomech ; 42(2): 91-9, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19062019

RESUMO

In the recent years medical diagnosis and surgery planning often require the precise evaluation of joint movements. This has led to exploit reconstructed three-dimensional models of the joint tissues obtained from CT or MR Images (for bones, cartilages, etc.). In such context, efficiently and precisely detecting collisions among the virtual tissues is critical for guaranteeing the quality of any further analysis. The common methods of collision detection are usually designed for general purpose applications in computer graphics or CAD-CAM. Hence they face worst case scenarios when handling the quasi-perfect concavity-convexity matching of the articular surfaces. In this paper, we present two fast collision detection methods that take advantage of the relative proximity and the nature of the movement to discard unnecessary calculations. The proposed approaches also accurately provide the penetration depths along two functional directions, without any approximation. They are compared with other collision detection methods and tested in different biomedical scenarios related to the human hip joint.


Assuntos
Simulação por Computador , Articulações/anatomia & histologia , Articulações/fisiologia , Aceleração , Algoritmos , Fenômenos Biomecânicos , Articulação do Quadril/anatomia & histologia , Articulação do Quadril/fisiologia , Humanos , Movimento , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-18003148

RESUMO

Finding the range of motion for the human joints is a popular method for diagnosing joint diseases. By current technology, it is more trustable and easier to find the range of motion by employing computer based models of the human tissues. In this paper we propose a novel method for finding range of motion for human joints without using any collision detection algorithm. This method is based on mesh classifying in a cylindrically segmented space. The method shows to be much faster than the traditional ones and provides the accurate results. This method is illustrated on the case of finding the range of motion in the human hip joint.


Assuntos
Algoritmos , Articulação do Quadril/anatomia & histologia , Articulação do Quadril/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Amplitude de Movimento Articular/fisiologia , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...