Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(2): e20457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764287

RESUMO

Oats (Avena sativa L.) provide unique nutritional benefits and contribute to sustainable agricultural systems. Breeding high-value oat varieties that meet milling industry standards is crucial for satisfying the demand for oat-based food products. Test weight, thins, and groat percentage are primary traits that define oat milling quality and the final price of food-grade oats. Conventional selection for milling quality is costly and burdensome. Multi-trait genomic selection (MTGS) combines information from genome-wide markers and secondary traits genetically correlated with primary traits to predict breeding values of primary traits on candidate breeding lines. MTGS can improve prediction accuracy and significantly accelerate the rate of genetic gain. In this study, we evaluated different MTGS models that used morphometric grain traits to improve prediction accuracy for primary grain quality traits within the constraints of a breeding program. We evaluated 558 breeding lines from the University of Illinois Oat Breeding Program across 2 years for primary milling traits, test weight, thins, and groat percentage, and secondary grain morphometric traits derived from kernel and groat images. Kernel morphometric traits were genetically correlated with test weight and thins percentage but were uncorrelated with groat percentage. For test weight and thins percentage, the MTGS model that included the kernel morphometric traits in both training and candidate sets outperformed single-trait models by 52% and 59%, respectively. In contrast, MTGS models for groat percentage were not significantly better than the single-trait model. We found that incorporating kernel morphometric traits can improve the genomic selection for test weight and thins percentage.


Assuntos
Avena , Grão Comestível , Melhoramento Vegetal , Avena/genética , Grão Comestível/genética , Seleção Genética , Fenótipo , Genoma de Planta , Genômica/métodos , Locos de Características Quantitativas
2.
Plant Methods ; 19(1): 92, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635239

RESUMO

BACKGROUND: In plant breeding, one of the most cost-effective and efficient ways to increase genetic gain is to reduce the breeding cycle time. In general, modern breeding methods for self-pollinated crops should strive to develop fixed lines at the lowest possible cost and in the minimum possible amount of time. Previous studies on spring oat (Avena sativa L.) showed that combining high plant density with limited soil fertility and moisture levels in a growth media like sand effectively decreases the time and cost of generating fixed single-seed descent lines. More recently, 'speed breeding,' or the exposure to prolonged photoperiod regimes of 22 h, has been shown to decrease flowering time in oat significantly. The goal of this study was to combine 'speed breeding' with high-density planting in a limited soil fertility media to reduce further the costs and time required to develop oat single-seed-descent lines. RESULTS: We grew oat plants at low density in potting-mix (control), high density in potting-mix (HD-soil), and high density in sand (HD-sand) under 16 and 22 h of day length. We observed that oat plants grown in HD-sand and exposed to 22 h day length reduced their flowering time by around 20 and 5 days on average compared to those grown in control conditions at 16 and 22 h, respectively. We also observed that 85% of plants grown at high density in sand produced a single seed when grown in bulk conditions. In contrast, only 40% of plants grown at high density in potting-mix produced a single seed. CONCLUSIONS: Our novel protocol showed that oat plants grown in high-density bulks, using sand media and 22-hour day length, reduced their flowering time by 20 days compared to control conditions and produced plants with single seeds, following closely single-seed descent assumptions while significantly reducing labor costs and greenhouse space. This methodology can be deployed in oat breeding programs to help them accelerate their rate of genetic grain for multiple traits.

3.
Plant Genome ; 14(3): e20134, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510797

RESUMO

Rice (Oryza sativa L.)grain quality is a set of complex interrelated traits that include grain milling, appearance, cooking, and edible properties. As consumer preferences in Latin America and the Caribbean evolve, determining what traits best capture regional grain quality preferences is fundamental for breeding and cultivar release. In this study, a genome-wide association study (GWAS), marker-assisted selection (MAS), and genomic selection (GS) were evaluated to help guide the development of new breeding strategies for rice grain quality improvement. For this purpose, 284 rice lines representing over 20 yr of breeding in Latin America and the Caribbean were genotyped and phenotyped for 10 different traits including grain milling, appearance, cooking, and edible quality traits. Genetic correlations among the 10 traits ranged from -0.83 to 0.85. A GWAS identified 19 significant marker/trait combinations associated with eight grain quality traits. Four functional markers, three located in the Waxy and one in the starch synthase IIa genes, were significantly associated with six grain-quality traits. These markers individually explained 51-75% of the phenotypic variance depending on the trait, clearly indicating their potential utility for MAS. Cross-validation studies to evaluate predictive abilities of four different GS models for each of the 10 quality traits were conducted and predictive abilities ranged from 0.3 to 0.72. Overall, the machine learning model random forest had the highest predictive abilities and was especially effective for traits where large effect quantitative trait loci were identified. This study provides the foundation for deploying effective molecular breeding strategies for grain quality in Latin American rice breeding programs.


Assuntos
Oryza , Culinária , Estudo de Associação Genômica Ampla , América Latina , Oryza/genética , Melhoramento Vegetal , Projetos de Pesquisa
4.
Genes (Basel) ; 11(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987927

RESUMO

Rice (Oryza sativa L.) is more sensitive to drought stress than other cereals. To dissect molecular mechanisms underlying drought-tolerant yield in rice, we applied differential expression and co-expression network approaches to transcriptomes from flag-leaf and emerging panicle tissues of a drought-tolerant yield introgression line, DTY-IL, and the recurrent parent Swarna, under moderate reproductive-stage drought stress. Protein turnover and efficient reactive oxygen species scavenging were found to be the driving factors in both tissues. In the flag-leaf, the responses further included maintenance of photosynthesis and cell wall reorganization, while in the panicle biosynthesis of secondary metabolites was found to play additional roles. Hub genes of importance in differential drought responses included an expansin in the flag-leaf and two peroxidases in the panicle. Overlaying differential expression data with allelic variation in DTY-IL quantitative trait loci allowed for the prioritization of candidate genes. They included a differentially regulated auxin-responsive protein, with DTY-IL-specific amino acid changes in conserved domains, as well as a protein kinase with a DTY-IL-specific frameshift in the C-terminal region. The approach highlights how the integration of differential expression and allelic variation can aid in the discovery of mechanism and putative causal contribution underlying quantitative trait loci for drought-tolerant yield.


Assuntos
Secas , Redes Reguladoras de Genes , Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Estresse Fisiológico , Transcriptoma , Biologia Computacional , Fertilidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Oryza/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
5.
Plant Methods ; 15: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367224

RESUMO

BACKGROUND: Integrated breeding approaches such as combining marker-assisted selection and rapid line fixation through single-seed-descent, can effectively increase the frequency of desirable alleles in a breeding program and increase the rate of genetic gain for quantitative traits by shortening the breeding cycle. However, with most genotyping being outsourced to 3rd party service providers' nowadays, sampling has become the bottleneck for many breeding programs. While seed-chipping as prevailed as an automatable seed sampling protocol in many species, the symmetry of rice seeds makes this solution as laborious and costly as sampling leaf tissue. The aim of this study is to develop, validate and deploy a single seed sampling strategy for marker-assisted selection of fixed lines in rice that is more efficient, cost-effective and convenient compared to leaf-based sampling protocols without compromising the accuracy of the marker-assisted selection results. RESULTS: Evaluations replicated across accessions and markers showed that a single rice seed is sufficient to generate enough DNA (7-8 ng/µL) to run at least ten PCR trait-markers suitable for marker-assisted selection strategies in rice. The DNA quantity and quality extracted from single seeds from fixed lines (F6) with different physical and/or chemical properties were not significantly different. Nor were there significant differences between single seeds collected 15 days after panicle initiation compared to those harvested at maturity. A large-scale comparison between single seed and leaf-based methodologies showed not only high levels of genotypic concordance between both protocols (~ 99%) but also higher SNP call rates in single seed (99.24% vs. 97.5% in leaf). A cost-benefit analysis showed that this single seed sampling strategy decreased the cost of sampling fourfold. An advantage of this approach is that desirable genotypes can be selected before investing in planting activities reducing the cost associated with field operations. CONCLUSION: This study reports the development of a cost-effective and simple single seed genotyping strategy that facilitates the adoption and deployment of marker-assisted selection strategies in rice. This will allow breeders to increase the frequency of favorable alleles and combine rapid generation advancement techniques much more cost-effectively accelerating the process and efficiency of parental selection and varietal development.

6.
Rice (N Y) ; 12(1): 55, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350673

RESUMO

BACKGROUND: While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs. RESULTS: Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%. These technical properties were not affected when two common DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average 430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications. CONCLUSIONS: This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.

7.
Theor Appl Genet ; 120(3): 563-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19847389

RESUMO

To facilitate the creation of easily comparable, low-resolution genetic maps with evenly distributed markers in rice (Oryza sativa L.), we conceived of and developed a Universal Core Genetic Map (UCGM). With this aim, we derived a set of 165 anchors, representing clusters of three microsatellite or simple sequence repeat (SSR) markers arranged into non-recombining groups. Each anchor consists of at least three, closely linked SSRs, located within a distance below the genetic resolution provided by common, segregating populations (<500 individuals). We chose anchors that were evenly distributed across the rice chromosomes, with spacing between 2 and 3.5 Mbp (except in the telomeric regions, where spacing was 1.5 Mbp). Anchor selection was performed using in silico tools and data: the O. sativa cv. Nipponbare rice genome sequence, the CHARM tool, information from the Gramene database and the OrygenesDB database. Sixteen AA-genome accessions of the Oryza genus were used to evaluate polymorphisms for the selected markers, including accessions from O. sativa, O. glaberrima, O. barthii, O. rufipogon, O. glumaepatula and O. meridionalis. High levels of polymorphism were found for the tested O. sativa x O. glaberrima or O. sativa x wild rice combinations. We developed Paddy Map, a simple database that is helpful in selecting optimal sets of polymorphic SSRs for any cross that involves the previously mentioned species. Validation of the UCGM was done by using it to develop three interspecific genetic maps and by comparing genetic SSR locations with their physical positions on the rice pseudomolecules. In this study, we demonstrate that the UCGM is a useful tool for the rice genetics and breeding community, especially in strategies based on interspecific hybridisation.


Assuntos
Oryza/genética , Mapeamento Físico do Cromossomo/métodos , Cruzamentos Genéticos , Bases de Dados Genéticas , Genoma de Planta/genética , Repetições Minissatélites/genética , Polimorfismo Genético , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...